Delete holomorphic_JensenFormula.lean
This commit is contained in:
parent
712be956d0
commit
fe0d8a5f5e
|
@ -1,172 +0,0 @@
|
||||||
import Nevanlinna.analyticOn_zeroSet
|
|
||||||
import Nevanlinna.harmonicAt_examples
|
|
||||||
import Nevanlinna.harmonicAt_meanValue
|
|
||||||
import Nevanlinna.specialFunctions_CircleIntegral_affine
|
|
||||||
|
|
||||||
|
|
||||||
theorem jensen_case_R_eq_one
|
|
||||||
(f : ℂ → ℂ)
|
|
||||||
(h₁f : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, HolomorphicAt f z)
|
|
||||||
(h₂f : f 0 ≠ 0)
|
|
||||||
(S : Finset ℕ)
|
|
||||||
(a : S → ℂ)
|
|
||||||
(ha : ∀ s, a s ∈ Metric.ball 0 1)
|
|
||||||
(F : ℂ → ℂ)
|
|
||||||
(h₁F : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, HolomorphicAt F z)
|
|
||||||
(h₂F : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, F z ≠ 0)
|
|
||||||
(h₃F : f = fun z ↦ (F z) * ∏ s : S, (z - a s)) :
|
|
||||||
Real.log ‖f 0‖ = -∑ s, Real.log (‖a s‖⁻¹) + (2 * Real.pi)⁻¹ * ∫ (x : ℝ) in (0)..2 * Real.pi, Real.log ‖f (circleMap 0 1 x)‖ := by
|
|
||||||
|
|
||||||
have h₁U : IsPreconnected (Metric.closedBall (0 : ℂ) 1) := by sorry
|
|
||||||
have h₂U : IsCompact (Metric.closedBall (0 : ℂ) 1) := by sorry
|
|
||||||
have h₁f : AnalyticOn ℂ f (Metric.closedBall (0 : ℂ) 1) := by sorry
|
|
||||||
have h₂f : ∃ u ∈ (Metric.closedBall (0 : ℂ) 1), f u ≠ 0 := by sorry
|
|
||||||
|
|
||||||
let α := AnalyticOnCompact.eliminateZeros h₁U h₂U h₁f h₂f
|
|
||||||
obtain ⟨g, A, h'₁g, h₂g, h₃g⟩ := α
|
|
||||||
have h₁g : ∀ z ∈ Metric.closedBall 0 1, HolomorphicAt F z := by sorry
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
let logAbsF := fun w ↦ Real.log ‖F w‖
|
|
||||||
|
|
||||||
have t₀ : ∀ z ∈ Metric.closedBall 0 1, HarmonicAt logAbsF z := by
|
|
||||||
intro z hz
|
|
||||||
apply logabs_of_holomorphicAt_is_harmonic
|
|
||||||
apply h₁F z hz
|
|
||||||
exact h₂F z hz
|
|
||||||
|
|
||||||
have t₁ : (∫ (x : ℝ) in (0)..2 * Real.pi, logAbsF (circleMap 0 1 x)) = 2 * Real.pi * logAbsF 0 := by
|
|
||||||
apply harmonic_meanValue₁ 1 Real.zero_lt_one t₀
|
|
||||||
|
|
||||||
have t₂ : ∀ s, f (a s) = 0 := by
|
|
||||||
intro s
|
|
||||||
rw [h₃F]
|
|
||||||
simp
|
|
||||||
right
|
|
||||||
apply Finset.prod_eq_zero_iff.2
|
|
||||||
use s
|
|
||||||
simp
|
|
||||||
|
|
||||||
let logAbsf := fun w ↦ Real.log ‖f w‖
|
|
||||||
have s₀ : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, f z ≠ 0 → logAbsf z = logAbsF z + ∑ s, Real.log ‖z - a s‖ := by
|
|
||||||
intro z h₁z h₂z
|
|
||||||
dsimp [logAbsf]
|
|
||||||
rw [h₃F]
|
|
||||||
simp_rw [Complex.abs.map_mul]
|
|
||||||
rw [Complex.abs_prod]
|
|
||||||
rw [Real.log_mul]
|
|
||||||
rw [Real.log_prod]
|
|
||||||
rfl
|
|
||||||
intro s hs
|
|
||||||
simp
|
|
||||||
by_contra ha'
|
|
||||||
rw [ha'] at h₂z
|
|
||||||
exact h₂z (t₂ s)
|
|
||||||
-- Complex.abs (F z) ≠ 0
|
|
||||||
simp
|
|
||||||
exact h₂F z h₁z
|
|
||||||
-- ∏ I : { x // x ∈ S }, Complex.abs (z - a I) ≠ 0
|
|
||||||
by_contra h'
|
|
||||||
obtain ⟨s, h's, h''⟩ := Finset.prod_eq_zero_iff.1 h'
|
|
||||||
simp at h''
|
|
||||||
rw [h''] at h₂z
|
|
||||||
let A := t₂ s
|
|
||||||
exact h₂z A
|
|
||||||
|
|
||||||
have s₁ : ∀ z ∈ Metric.closedBall (0 : ℂ) 1, f z ≠ 0 → logAbsF z = logAbsf z - ∑ s, Real.log ‖z - a s‖ := by
|
|
||||||
intro z h₁z h₂z
|
|
||||||
rw [s₀ z h₁z]
|
|
||||||
simp
|
|
||||||
assumption
|
|
||||||
|
|
||||||
have : 0 ∈ Metric.closedBall (0 : ℂ) 1 := by simp
|
|
||||||
rw [s₁ 0 this h₂f] at t₁
|
|
||||||
|
|
||||||
have h₀ {x : ℝ} : f (circleMap 0 1 x) ≠ 0 := by
|
|
||||||
rw [h₃F]
|
|
||||||
simp
|
|
||||||
constructor
|
|
||||||
· have : (circleMap 0 1 x) ∈ Metric.closedBall (0 : ℂ) 1 := by simp
|
|
||||||
exact h₂F (circleMap 0 1 x) this
|
|
||||||
· by_contra h'
|
|
||||||
obtain ⟨s, _, h₂s⟩ := Finset.prod_eq_zero_iff.1 h'
|
|
||||||
have : circleMap 0 1 x = a s := by
|
|
||||||
rw [← sub_zero (circleMap 0 1 x)]
|
|
||||||
nth_rw 2 [← h₂s]
|
|
||||||
simp
|
|
||||||
let A := ha s
|
|
||||||
rw [← this] at A
|
|
||||||
simp at A
|
|
||||||
|
|
||||||
have {θ} : (circleMap 0 1 θ) ∈ Metric.closedBall (0 : ℂ) 1 := by simp
|
|
||||||
simp_rw [s₁ (circleMap 0 1 _) this h₀] at t₁
|
|
||||||
rw [intervalIntegral.integral_sub] at t₁
|
|
||||||
rw [intervalIntegral.integral_finset_sum] at t₁
|
|
||||||
|
|
||||||
simp_rw [int₀ (ha _)] at t₁
|
|
||||||
simp at t₁
|
|
||||||
rw [t₁]
|
|
||||||
simp
|
|
||||||
have {w : ℝ} : Real.pi⁻¹ * 2⁻¹ * (2 * Real.pi * w) = w := by
|
|
||||||
ring_nf
|
|
||||||
simp [mul_inv_cancel₀ Real.pi_ne_zero]
|
|
||||||
rw [this]
|
|
||||||
simp
|
|
||||||
rfl
|
|
||||||
-- ∀ i ∈ Finset.univ, IntervalIntegrable (fun x => Real.log ‖circleMap 0 1 x - a i‖) MeasureTheory.volume 0 (2 * Real.pi)
|
|
||||||
intro i _
|
|
||||||
apply Continuous.intervalIntegrable
|
|
||||||
apply continuous_iff_continuousAt.2
|
|
||||||
intro x
|
|
||||||
have : (fun x => Real.log ‖circleMap 0 1 x - a i‖) = Real.log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 1 x - a i) :=
|
|
||||||
rfl
|
|
||||||
rw [this]
|
|
||||||
apply ContinuousAt.comp
|
|
||||||
apply Real.continuousAt_log
|
|
||||||
simp
|
|
||||||
by_contra ha'
|
|
||||||
let A := ha i
|
|
||||||
rw [← ha'] at A
|
|
||||||
simp at A
|
|
||||||
apply ContinuousAt.comp
|
|
||||||
apply Complex.continuous_abs.continuousAt
|
|
||||||
fun_prop
|
|
||||||
-- IntervalIntegrable (fun x => logAbsf (circleMap 0 1 x)) MeasureTheory.volume 0 (2 * Real.pi)
|
|
||||||
apply Continuous.intervalIntegrable
|
|
||||||
apply continuous_iff_continuousAt.2
|
|
||||||
intro x
|
|
||||||
have : (fun x => logAbsf (circleMap 0 1 x)) = Real.log ∘ Complex.abs ∘ f ∘ (fun x ↦ circleMap 0 1 x) :=
|
|
||||||
rfl
|
|
||||||
rw [this]
|
|
||||||
apply ContinuousAt.comp
|
|
||||||
simp
|
|
||||||
exact h₀
|
|
||||||
apply ContinuousAt.comp
|
|
||||||
apply Complex.continuous_abs.continuousAt
|
|
||||||
apply ContinuousAt.comp
|
|
||||||
apply ContDiffAt.continuousAt (f := f) (𝕜 := ℝ) (n := 1)
|
|
||||||
apply HolomorphicAt.contDiffAt
|
|
||||||
apply h₁f
|
|
||||||
simp
|
|
||||||
let A := continuous_circleMap 0 1
|
|
||||||
apply A.continuousAt
|
|
||||||
-- IntervalIntegrable (fun x => ∑ s : { x // x ∈ S }, Real.log ‖circleMap 0 1 x - a s‖) MeasureTheory.volume 0 (2 * Real.pi)
|
|
||||||
apply Continuous.intervalIntegrable
|
|
||||||
apply continuous_finset_sum
|
|
||||||
intro i _
|
|
||||||
apply continuous_iff_continuousAt.2
|
|
||||||
intro x
|
|
||||||
have : (fun x => Real.log ‖circleMap 0 1 x - a i‖) = Real.log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 1 x - a i) :=
|
|
||||||
rfl
|
|
||||||
rw [this]
|
|
||||||
apply ContinuousAt.comp
|
|
||||||
apply Real.continuousAt_log
|
|
||||||
simp
|
|
||||||
by_contra ha'
|
|
||||||
let A := ha i
|
|
||||||
rw [← ha'] at A
|
|
||||||
simp at A
|
|
||||||
apply ContinuousAt.comp
|
|
||||||
apply Complex.continuous_abs.continuousAt
|
|
||||||
fun_prop
|
|
Loading…
Reference in New Issue