Working…
This commit is contained in:
parent
d1de7fee33
commit
fb5bf47170
|
@ -84,13 +84,37 @@ theorem JensenFormula₂ :
|
|||
rw [this]
|
||||
|
||||
|
||||
have : ∀ z : ℂ, Complex.log (Complex.abs z) = 1/2 * Complex.log z + 1/2 * Complex.log (conj z) := by
|
||||
have : ∀ z : ℂ, log (Complex.abs z) = 1/2 * Complex.log z + 1/2 * Complex.log (conj z) := by
|
||||
intro z
|
||||
have : ∃ r φ : ℝ, z = r * Complex.exp (φ * Complex.I) := by
|
||||
|
||||
by_cases argHyp : Complex.arg z = π
|
||||
|
||||
· rw [Complex.log, argHyp, Complex.log]
|
||||
let ZZ := Complex.arg_conj z
|
||||
rw [argHyp] at ZZ
|
||||
|
||||
simp at ZZ
|
||||
|
||||
have : conj z = z := by
|
||||
apply?
|
||||
sorry
|
||||
|
||||
obtain ⟨r, φ, h⟩ := this
|
||||
rw [h]
|
||||
let ZZ := Complex.log_conj z
|
||||
|
||||
nth_rewrite 1 [Complex.log]
|
||||
|
||||
simp
|
||||
|
||||
let φ := Complex.arg z
|
||||
let r := Complex.abs z
|
||||
have : z = r * Complex.exp (φ * Complex.I) := by
|
||||
exact (Complex.abs_mul_exp_arg_mul_I z).symm
|
||||
|
||||
have : Complex.log z = Complex.log r + r*Complex.I := by
|
||||
apply?
|
||||
sorry
|
||||
simp at XX
|
||||
|
||||
|
||||
sorry
|
||||
|
||||
|
|
Loading…
Reference in New Issue