Update holomorphic_zero.lean
This commit is contained in:
parent
d0cd033d5c
commit
f9f177e7b9
|
@ -115,6 +115,25 @@ theorem zeroDivisor_support_iff
|
||||||
assumption
|
assumption
|
||||||
|
|
||||||
|
|
||||||
|
example
|
||||||
|
{f : ℂ → ℂ}
|
||||||
|
{U : Set ℂ}
|
||||||
|
(hU : IsPreconnected U)
|
||||||
|
(h₁f : AnalyticOn ℂ f U)
|
||||||
|
(h₂f : ∃ z ∈ U, f z ≠ 0) :
|
||||||
|
∀ (hz : z ∈ U), (h₁f z hz).order ≠ ⊤ := by
|
||||||
|
by_contra H
|
||||||
|
push_neg at H
|
||||||
|
obtain ⟨z', hz'⟩ := H
|
||||||
|
|
||||||
|
rw [AnalyticAt.order_eq_top_iff] at hz'
|
||||||
|
let A := AnalyticOn.eqOn_zero_of_preconnected_of_frequently_eq_zero h₁f hU z'
|
||||||
|
rw [AnalyticAt.frequently_eq_iff_eventually_eq] at A
|
||||||
|
let B := A hz'
|
||||||
|
|
||||||
|
sorry
|
||||||
|
|
||||||
|
|
||||||
theorem discreteZeros
|
theorem discreteZeros
|
||||||
{f : ℂ → ℂ} :
|
{f : ℂ → ℂ} :
|
||||||
DiscreteTopology (Function.support (zeroDivisor f)) := by
|
DiscreteTopology (Function.support (zeroDivisor f)) := by
|
||||||
|
|
Loading…
Reference in New Issue