Working...
This commit is contained in:
parent
0c15de05b8
commit
f85fafd05f
|
@ -1 +1 @@
|
||||||
def hello := "world"
|
import Nevanlinna.cauchyRiemann
|
|
@ -0,0 +1,37 @@
|
||||||
|
import Mathlib.Analysis.Complex.Basic
|
||||||
|
import Mathlib.Analysis.Calculus.LineDeriv.Basic
|
||||||
|
import Mathlib.Analysis.Calculus.ContDiff.Defs
|
||||||
|
import Mathlib.Analysis.Calculus.FDeriv.Basic
|
||||||
|
import Nevanlinna.cauchyRiemann
|
||||||
|
|
||||||
|
noncomputable def Complex.laplace : (ℂ → ℝ) → (ℂ → ℝ) := by
|
||||||
|
intro f
|
||||||
|
let f₁ := fun x ↦ lineDeriv ℝ f x 1
|
||||||
|
let f₁₁ := fun x ↦ lineDeriv ℝ f₁ x 1
|
||||||
|
let f₂ := fun x ↦ lineDeriv ℝ f x Complex.I
|
||||||
|
let f₂₂ := fun x ↦ lineDeriv ℝ f₂ x Complex.I
|
||||||
|
exact f₁₁ + f₂₂
|
||||||
|
|
||||||
|
|
||||||
|
def Harmonic (f : ℂ → ℝ) : Prop :=
|
||||||
|
(ContDiff ℝ 2 f) ∧ (∀ z, Complex.laplace f z = 0)
|
||||||
|
|
||||||
|
|
||||||
|
theorem re_comp_holomorphic_is_harmonic (f : ℂ → ℂ) :
|
||||||
|
Differentiable ℂ f → Harmonic (Complex.reCLM ∘ f) := by
|
||||||
|
|
||||||
|
intro h
|
||||||
|
|
||||||
|
constructor
|
||||||
|
· -- f is two times real continuously differentiable
|
||||||
|
sorry
|
||||||
|
|
||||||
|
· -- Laplace of f is zero
|
||||||
|
intro z
|
||||||
|
unfold Complex.laplace
|
||||||
|
simp
|
||||||
|
let ZZ := (CauchyRiemann₃ (h z)).left
|
||||||
|
rw [ZZ]
|
||||||
|
|
||||||
|
sorry
|
||||||
|
|
|
@ -1,39 +0,0 @@
|
||||||
import Mathlib.Analysis.Complex.Basic
|
|
||||||
import Mathlib.Analysis.Calculus.LineDeriv.Basic
|
|
||||||
import Mathlib.Analysis.Calculus.ContDiff.Defs
|
|
||||||
import Mathlib.Analysis.Calculus.FDeriv.Basic
|
|
||||||
|
|
||||||
noncomputable def Real.laplace : (ℝ × ℝ → ℝ) → (ℝ × ℝ → ℝ) := by
|
|
||||||
intro f
|
|
||||||
let f₁ := fun x ↦ lineDeriv ℝ f x ⟨1,0⟩
|
|
||||||
let f₁₁ := fun x ↦ lineDeriv ℝ f₁ x ⟨1,0⟩
|
|
||||||
let f₂ := fun x ↦ lineDeriv ℝ f x ⟨0,1⟩
|
|
||||||
let f₂₂ := fun x ↦ lineDeriv ℝ f₂ x ⟨0,1⟩
|
|
||||||
exact f₁₁ + f₂₂
|
|
||||||
|
|
||||||
noncomputable def Complex.laplace : (ℂ → ℝ) → (ℂ → ℝ) := by
|
|
||||||
intro f
|
|
||||||
let f₁ := fun x ↦ lineDeriv ℝ f x 1
|
|
||||||
let f₁₁ := fun x ↦ lineDeriv ℝ f₁ x 1
|
|
||||||
let f₂ := fun x ↦ lineDeriv ℝ f x Complex.I
|
|
||||||
let f₂₂ := fun x ↦ lineDeriv ℝ f₂ x Complex.I
|
|
||||||
exact f₁₁ + f₂₂
|
|
||||||
|
|
||||||
|
|
||||||
theorem xx : ∀ f : ℂ → , f = 0 := by
|
|
||||||
intro f
|
|
||||||
|
|
||||||
let f₁ := fun x ↦ lineDeriv ℝ f x 1
|
|
||||||
let f₂ := fun x ↦ lineDeriv ℝ f x Complex.I
|
|
||||||
|
|
||||||
have : ∀ z, fderiv ℂ f z = 0 := by
|
|
||||||
sorry
|
|
||||||
|
|
||||||
|
|
||||||
have : (fun x ↦ lineDeriv ℝ f x 1) = (fun x ↦ lineDeriv ℝ f x Complex.I) := by
|
|
||||||
|
|
||||||
unfold lineDeriv
|
|
||||||
|
|
||||||
sorry
|
|
||||||
|
|
||||||
sorry
|
|
Loading…
Reference in New Issue