Update analyticAt.lean
This commit is contained in:
parent
dbeb631178
commit
f83f772506
|
@ -165,26 +165,38 @@ theorem AnalyticAt.order_comp_CLE
|
||||||
obtain ⟨g, h₁g, h₂g, h₃g⟩ := hn
|
obtain ⟨g, h₁g, h₂g, h₃g⟩ := hn
|
||||||
have A := eventually_nhds_comp_composition h₃g ℓ.continuous
|
have A := eventually_nhds_comp_composition h₃g ℓ.continuous
|
||||||
|
|
||||||
|
have t₁ : AnalyticAt ℂ (fun z => ℓ z - ℓ z₀) z₀ := by
|
||||||
|
apply AnalyticAt.sub
|
||||||
|
exact ContinuousLinearEquiv.analyticAt ℓ z₀
|
||||||
|
exact analyticAt_const
|
||||||
|
have t₀ : AnalyticAt ℂ (fun z => (ℓ z - ℓ z₀) ^ n) z₀ := by
|
||||||
|
exact pow t₁ n
|
||||||
have : AnalyticAt ℂ (fun z ↦ (ℓ z - ℓ z₀) ^ n • g (ℓ z) : ℂ → ℂ) z₀ := by
|
have : AnalyticAt ℂ (fun z ↦ (ℓ z - ℓ z₀) ^ n • g (ℓ z) : ℂ → ℂ) z₀ := by
|
||||||
sorry
|
apply AnalyticAt.mul
|
||||||
|
exact t₀
|
||||||
|
apply AnalyticAt.comp h₁g
|
||||||
|
exact ContinuousLinearEquiv.analyticAt ℓ z₀
|
||||||
rw [AnalyticAt.order_congr (hf.comp (ℓ.analyticAt z₀)) this A]
|
rw [AnalyticAt.order_congr (hf.comp (ℓ.analyticAt z₀)) this A]
|
||||||
simp
|
simp
|
||||||
have t₀ : AnalyticAt ℂ (fun z => (ℓ z - ℓ z₀) ^ n) z₀ := by
|
|
||||||
sorry
|
|
||||||
|
|
||||||
rw [AnalyticAt.order_mul t₀ ((h₁g.comp (ℓ.analyticAt z₀)))]
|
rw [AnalyticAt.order_mul t₀ ((h₁g.comp (ℓ.analyticAt z₀)))]
|
||||||
|
|
||||||
have t₁ : AnalyticAt ℂ (fun z => ℓ z - ℓ z₀) z₀ := by
|
|
||||||
sorry
|
|
||||||
have : t₁.order = (1 : ℕ) := by
|
have : t₁.order = (1 : ℕ) := by
|
||||||
rw [AnalyticAt.order_eq_nat_iff]
|
rw [AnalyticAt.order_eq_nat_iff]
|
||||||
use (fun z ↦ ℓ 1)
|
use (fun _ ↦ ℓ 1)
|
||||||
simp
|
simp
|
||||||
constructor
|
constructor
|
||||||
· exact analyticAt_const
|
· exact analyticAt_const
|
||||||
· apply Filter.Eventually.of_forall
|
· apply Filter.Eventually.of_forall
|
||||||
intro x
|
intro x
|
||||||
sorry
|
calc ℓ x - ℓ z₀
|
||||||
|
_ = ℓ (x - z₀) := by
|
||||||
|
exact Eq.symm (ContinuousLinearEquiv.map_sub ℓ x z₀)
|
||||||
|
_ = ℓ ((x - z₀) * 1) := by
|
||||||
|
simp
|
||||||
|
_ = (x - z₀) * ℓ 1 := by
|
||||||
|
rw [← smul_eq_mul, ← smul_eq_mul]
|
||||||
|
exact ContinuousLinearEquiv.map_smul ℓ (x - z₀) 1
|
||||||
|
|
||||||
have : t₀.order = n := by
|
have : t₀.order = n := by
|
||||||
rw [AnalyticAt.order_pow t₁, this]
|
rw [AnalyticAt.order_pow t₁, this]
|
||||||
|
|
Loading…
Reference in New Issue