working…
This commit is contained in:
@@ -1,6 +1,13 @@
|
||||
import Nevanlinna.harmonicAt_examples
|
||||
import Nevanlinna.harmonicAt_meanValue
|
||||
|
||||
lemma int₀
|
||||
{a : ℂ}
|
||||
(ha : a ∈ Metric.ball 0 1)
|
||||
:
|
||||
∫ (x : ℝ) in (0)..2 * Real.pi, Real.log ‖circleMap 0 1 x - a‖ = 0 := by
|
||||
sorry
|
||||
|
||||
|
||||
theorem jensen_case_R_eq_one
|
||||
(f : ℂ → ℂ)
|
||||
@@ -64,21 +71,32 @@ theorem jensen_case_R_eq_one
|
||||
exact hz A
|
||||
|
||||
have s₁ : ∀ z, f z ≠ 0 → logAbsF z = logAbsf z - ∑ s, Real.log ‖z - a s‖ := by
|
||||
sorry
|
||||
intro z hz
|
||||
rw [s₀ z hz]
|
||||
simp
|
||||
|
||||
rw [s₁ 0 h₂f] at t₁
|
||||
|
||||
have {x : ℝ} : f (circleMap 0 1 x) ≠ 0 := by
|
||||
sorry
|
||||
have h₀ {x : ℝ} : f (circleMap 0 1 x) ≠ 0 := by
|
||||
rw [h₃F]
|
||||
simp
|
||||
constructor
|
||||
· exact h₂F (circleMap 0 1 x)
|
||||
· by_contra h'
|
||||
obtain ⟨s, _, h₂s⟩ := Finset.prod_eq_zero_iff.1 h'
|
||||
have : circleMap 0 1 x = a s := by
|
||||
rw [← sub_zero (circleMap 0 1 x)]
|
||||
nth_rw 2 [← h₂s]
|
||||
simp
|
||||
let A := ha s
|
||||
rw [← this] at A
|
||||
simp at A
|
||||
|
||||
simp_rw [s₁ (circleMap 0 1 _) this] at t₁
|
||||
simp_rw [s₁ (circleMap 0 1 _) h₀] at t₁
|
||||
rw [intervalIntegral.integral_sub] at t₁
|
||||
rw [intervalIntegral.integral_finset_sum] at t₁
|
||||
|
||||
have {i : S} : ∫ (x : ℝ) in (0)..2 * Real.pi, Real.log ‖circleMap 0 1 x - a i‖ = 0 := by
|
||||
sorry
|
||||
|
||||
simp_rw [this] at t₁
|
||||
simp_rw [int₀ (ha _)] at t₁
|
||||
simp at t₁
|
||||
rw [t₁]
|
||||
simp
|
||||
@@ -89,7 +107,7 @@ theorem jensen_case_R_eq_one
|
||||
simp
|
||||
rfl
|
||||
-- ∀ i ∈ Finset.univ, IntervalIntegrable (fun x => Real.log ‖circleMap 0 1 x - a i‖) MeasureTheory.volume 0 (2 * Real.pi)
|
||||
intro i hi
|
||||
intro i _
|
||||
apply Continuous.intervalIntegrable
|
||||
apply continuous_iff_continuousAt.2
|
||||
intro x
|
||||
@@ -115,7 +133,7 @@ theorem jensen_case_R_eq_one
|
||||
rw [this]
|
||||
apply ContinuousAt.comp
|
||||
simp
|
||||
sorry
|
||||
exact h₀
|
||||
apply ContinuousAt.comp
|
||||
apply Complex.continuous_abs.continuousAt
|
||||
apply ContinuousAt.comp
|
||||
@@ -125,7 +143,7 @@ theorem jensen_case_R_eq_one
|
||||
-- IntervalIntegrable (fun x => ∑ s : { x // x ∈ S }, Real.log ‖circleMap 0 1 x - a s‖) MeasureTheory.volume 0 (2 * Real.pi)
|
||||
apply Continuous.intervalIntegrable
|
||||
apply continuous_finset_sum
|
||||
intro i hi
|
||||
intro i _
|
||||
apply continuous_iff_continuousAt.2
|
||||
intro x
|
||||
have : (fun x => Real.log ‖circleMap 0 1 x - a i‖) = Real.log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 1 x - a i) :=
|
||||
|
Reference in New Issue
Block a user