working…

This commit is contained in:
Stefan Kebekus
2024-08-01 10:02:36 +02:00
parent 9a7c8b82a4
commit f65c84a14b
3 changed files with 38 additions and 20 deletions

View File

@@ -1,6 +1,13 @@
import Nevanlinna.harmonicAt_examples
import Nevanlinna.harmonicAt_meanValue
lemma int₀
{a : }
(ha : a Metric.ball 0 1)
:
(x : ) in (0)..2 * Real.pi, Real.log circleMap 0 1 x - a = 0 := by
sorry
theorem jensen_case_R_eq_one
(f : )
@@ -64,21 +71,32 @@ theorem jensen_case_R_eq_one
exact hz A
have s₁ : z, f z 0 logAbsF z = logAbsf z - s, Real.log z - a s := by
sorry
intro z hz
rw [s₀ z hz]
simp
rw [s₁ 0 h₂f] at t₁
have {x : } : f (circleMap 0 1 x) 0 := by
sorry
have h₀ {x : } : f (circleMap 0 1 x) 0 := by
rw [h₃F]
simp
constructor
· exact h₂F (circleMap 0 1 x)
· by_contra h'
obtain s, _, h₂s := Finset.prod_eq_zero_iff.1 h'
have : circleMap 0 1 x = a s := by
rw [ sub_zero (circleMap 0 1 x)]
nth_rw 2 [ h₂s]
simp
let A := ha s
rw [ this] at A
simp at A
simp_rw [s₁ (circleMap 0 1 _) this] at t₁
simp_rw [s₁ (circleMap 0 1 _) h₀] at t₁
rw [intervalIntegral.integral_sub] at t₁
rw [intervalIntegral.integral_finset_sum] at t₁
have {i : S} : (x : ) in (0)..2 * Real.pi, Real.log circleMap 0 1 x - a i = 0 := by
sorry
simp_rw [this] at t₁
simp_rw [int₀ (ha _)] at t₁
simp at t₁
rw [t₁]
simp
@@ -89,7 +107,7 @@ theorem jensen_case_R_eq_one
simp
rfl
-- ∀ i ∈ Finset.univ, IntervalIntegrable (fun x => Real.log ‖circleMap 0 1 x - a i‖) MeasureTheory.volume 0 (2 * Real.pi)
intro i hi
intro i _
apply Continuous.intervalIntegrable
apply continuous_iff_continuousAt.2
intro x
@@ -115,7 +133,7 @@ theorem jensen_case_R_eq_one
rw [this]
apply ContinuousAt.comp
simp
sorry
exact h₀
apply ContinuousAt.comp
apply Complex.continuous_abs.continuousAt
apply ContinuousAt.comp
@@ -125,7 +143,7 @@ theorem jensen_case_R_eq_one
-- IntervalIntegrable (fun x => ∑ s : { x // x ∈ S }, Real.log ‖circleMap 0 1 x - a s‖) MeasureTheory.volume 0 (2 * Real.pi)
apply Continuous.intervalIntegrable
apply continuous_finset_sum
intro i hi
intro i _
apply continuous_iff_continuousAt.2
intro x
have : (fun x => Real.log circleMap 0 1 x - a i) = Real.log Complex.abs (fun x circleMap 0 1 x - a i) :=