This commit is contained in:
Stefan Kebekus 2025-01-03 17:45:22 +01:00
parent ce3b3d8bd1
commit f5a835764b
13 changed files with 29 additions and 3230 deletions

View File

@ -1 +1,28 @@
import Nevanlinna.analyticAt
import Nevanlinna.cauchyRiemann import Nevanlinna.cauchyRiemann
import Nevanlinna.codiscreteWithin
import Nevanlinna.divisor
import Nevanlinna.firstMain
import Nevanlinna.harmonicAt
import Nevanlinna.harmonicAt_examples
import Nevanlinna.harmonicAt_meanValue
import Nevanlinna.holomorphicAt
import Nevanlinna.holomorphic_examples
import Nevanlinna.holomorphic_primitive
import Nevanlinna.intervalIntegrability
import Nevanlinna.laplace
import Nevanlinna.logpos
import Nevanlinna.mathlibAddOn
import Nevanlinna.meromorphicAt
import Nevanlinna.meromorphicOn
import Nevanlinna.meromorphicOn_divisor
import Nevanlinna.meromorphicOn_integrability
import Nevanlinna.partialDeriv
import Nevanlinna.periodic_integrability
import Nevanlinna.specialFunctions_CircleIntegral_affine
import Nevanlinna.specialFunctions_Integral_log_sin
import Nevanlinna.stronglyMeromorphicAt
import Nevanlinna.stronglyMeromorphicOn
import Nevanlinna.stronglyMeromorphicOn_eliminate
import Nevanlinna.stronglyMeromorphicOn_ratlPolynomial
import Nevanlinna.stronglyMeromorphic_JensenFormula

View File

@ -1,59 +0,0 @@
import Nevanlinna.analyticAt
import Nevanlinna.divisor
open scoped Interval Topology
open Real Filter MeasureTheory intervalIntegral
noncomputable def AnalyticOnNhd.zeroDivisor
{f : }
{U : Set }
(hf : AnalyticOnNhd f U) :
Divisor U where
toFun := by
intro z
if hz : z ∈ U then
exact ((hf z hz).order.toNat : )
else
exact 0
supportInU := by
intro z hz
simp at hz
by_contra h₂z
simp [h₂z] at hz
locallyFiniteInU := by
intro z hz
apply eventually_nhdsWithin_iff.2
rw [eventually_nhds_iff]
rcases AnalyticAt.eventually_eq_zero_or_eventually_ne_zero (hf z hz) with h|h
· rw [eventually_nhds_iff] at h
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h
use N
constructor
· intro y h₁y _
by_cases h₃y : y ∈ U
· simp [h₃y]
right
rw [AnalyticAt.order_eq_top_iff (hf y h₃y)]
rw [eventually_nhds_iff]
use N
· simp [h₃y]
· tauto
· rw [eventually_nhdsWithin_iff, eventually_nhds_iff] at h
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h
use N
constructor
· intro y h₁y h₂y
by_cases h₃y : y ∈ U
· simp [h₃y]
left
rw [AnalyticAt.order_eq_zero_iff (hf y h₃y)]
exact h₁N y h₁y h₂y
· simp [h₃y]
· tauto

View File

@ -1,461 +0,0 @@
import Mathlib.Analysis.Analytic.Constructions
import Mathlib.Analysis.Analytic.IsolatedZeros
import Mathlib.Analysis.Complex.Basic
import Nevanlinna.analyticAt
noncomputable def AnalyticOnNhd.order
{f : } {U : Set } (hf : AnalyticOnNhd f U) : U → ℕ∞ := fun u ↦ (hf u u.2).order
theorem AnalyticOnNhd.order_eq_nat_iff
{f : }
{U : Set }
{z₀ : U}
(hf : AnalyticOnNhd f U)
(n : ) :
hf.order z₀ = ↑n ↔ ∃ (g : ), AnalyticOnNhd g U ∧ g z₀ ≠ 0 ∧ ∀ z, f z = (z - z₀) ^ n • g z := by
constructor
-- Direction →
intro hn
obtain ⟨gloc, h₁gloc, h₂gloc, h₃gloc⟩ := (AnalyticAt.order_eq_nat_iff (hf z₀ z₀.2) n).1 hn
-- Define a candidate function; this is (f z) / (z - z₀) ^ n with the
-- removable singularity removed
let g : := fun z ↦ if z = z₀ then gloc z₀ else (f z) / (z - z₀) ^ n
-- Describe g near z₀
have g_near_z₀ : ∀ᶠ (z : ) in nhds z₀, g z = gloc z := by
rw [eventually_nhds_iff]
obtain ⟨t, h₁t, h₂t, h₃t⟩ := eventually_nhds_iff.1 h₃gloc
use t
constructor
· intro y h₁y
by_cases h₂y : y = z₀
· dsimp [g]; simp [h₂y]
· dsimp [g]; simp [h₂y]
rw [div_eq_iff_mul_eq, eq_comm, mul_comm]
exact h₁t y h₁y
norm_num
rw [sub_eq_zero]
tauto
· constructor
· assumption
· assumption
-- Describe g near points z₁ that are different from z₀
have g_near_z₁ {z₁ : } : z₁ ≠ z₀ → ∀ᶠ (z : ) in nhds z₁, g z = f z / (z - z₀) ^ n := by
intro hz₁
rw [eventually_nhds_iff]
use {z₀.1}ᶜ
constructor
· intro y hy
simp at hy
simp [g, hy]
· exact ⟨isOpen_compl_singleton, hz₁⟩
-- Use g and show that it has all required properties
use g
constructor
· -- AnalyticOn g U
intro z h₁z
by_cases h₂z : z = z₀
· rw [h₂z]
apply AnalyticAt.congr h₁gloc
exact Filter.EventuallyEq.symm g_near_z₀
· simp_rw [eq_comm] at g_near_z₁
apply AnalyticAt.congr _ (g_near_z₁ h₂z)
apply AnalyticAt.div
exact hf z h₁z
apply AnalyticAt.pow
apply AnalyticAt.sub
apply analyticAt_id
apply analyticAt_const
simp
rw [sub_eq_zero]
tauto
· constructor
· simp [g]; tauto
· intro z
by_cases h₂z : z = z₀
· rw [h₂z, g_near_z₀.self_of_nhds]
exact h₃gloc.self_of_nhds
· rw [(g_near_z₁ h₂z).self_of_nhds]
simp [h₂z]
rw [div_eq_mul_inv, mul_comm, mul_assoc, inv_mul_cancel₀]
simp; norm_num
rw [sub_eq_zero]
tauto
-- direction ←
intro h
obtain ⟨g, h₁g, h₂g, h₃g⟩ := h
dsimp [AnalyticOnNhd.order]
rw [AnalyticAt.order_eq_nat_iff]
use g
exact ⟨h₁g z₀ z₀.2, ⟨h₂g, Filter.Eventually.of_forall h₃g⟩⟩
theorem AnalyticOnNhd.support_of_order₁
{f : }
{U : Set }
(hf : AnalyticOnNhd f U) :
Function.support hf.order = U.restrict f⁻¹' {0} := by
ext u
simp [AnalyticOnNhd.order]
rw [not_iff_comm, (hf u u.2).order_eq_zero_iff]
theorem AnalyticOnNhd.eliminateZeros
{f : }
{U : Set }
{A : Finset U}
(hf : AnalyticOnNhd f U)
(n : U → ) :
(∀ a ∈ A, hf.order a = n a) → ∃ (g : ), AnalyticOnNhd g U ∧ (∀ a ∈ A, g a ≠ 0) ∧ ∀ z, f z = (∏ a ∈ A, (z - a) ^ (n a)) • g z := by
apply Finset.induction (α := U) (p := fun A ↦ (∀ a ∈ A, (hf a.1 a.2).order = n a) → ∃ (g : ), AnalyticOnNhd g U ∧ (∀ a ∈ A, g a ≠ 0) ∧ ∀ z, f z = (∏ a ∈ A, (z - a) ^ (n a)) • g z)
-- case empty
simp
use f
simp
exact hf
-- case insert
intro b₀ B hb iHyp
intro hBinsert
obtain ⟨g₀, h₁g₀, h₂g₀, h₃g₀⟩ := iHyp (fun a ha ↦ hBinsert a (Finset.mem_insert_of_mem ha))
have : (h₁g₀ b₀ b₀.2).order = n b₀ := by
rw [← hBinsert b₀ (Finset.mem_insert_self b₀ B)]
let φ := fun z ↦ (∏ a ∈ B, (z - a.1) ^ n a)
have : f = fun z ↦ φ z * g₀ z := by
funext z
rw [h₃g₀ z]
rfl
simp_rw [this]
have h₁φ : AnalyticAt φ b₀ := by
dsimp [φ]
apply Finset.analyticAt_prod
intro b _
apply AnalyticAt.pow
apply AnalyticAt.sub
apply analyticAt_id
exact analyticAt_const
have h₂φ : h₁φ.order = (0 : ) := by
rw [AnalyticAt.order_eq_nat_iff h₁φ 0]
use φ
constructor
· assumption
· constructor
· dsimp [φ]
push_neg
rw [Finset.prod_ne_zero_iff]
intro a ha
simp
have : ¬ (b₀.1 - a.1 = 0) := by
by_contra C
rw [sub_eq_zero] at C
rw [SetCoe.ext C] at hb
tauto
tauto
· simp
rw [AnalyticAt.order_mul h₁φ (h₁g₀ b₀ b₀.2)]
rw [h₂φ]
simp
obtain ⟨g₁, h₁g₁, h₂g₁, h₃g₁⟩ := (AnalyticOnNhd.order_eq_nat_iff h₁g₀ (n b₀)).1 this
use g₁
constructor
· exact h₁g₁
· constructor
· intro a h₁a
by_cases h₂a : a = b₀
· rwa [h₂a]
· let A' := Finset.mem_of_mem_insert_of_ne h₁a h₂a
let B' := h₃g₁ a
let C' := h₂g₀ a A'
rw [B'] at C'
exact right_ne_zero_of_smul C'
· intro z
let A' := h₃g₀ z
rw [h₃g₁ z] at A'
rw [A']
rw [← smul_assoc]
congr
simp
rw [Finset.prod_insert]
ring
exact hb
theorem XX
{f : }
{U : Set }
(hU : IsPreconnected U)
(h₁f : AnalyticOnNhd f U)
(h₂f : ∃ u ∈ U, f u ≠ 0) :
∀ (hu : u ∈ U), (h₁f u hu).order.toNat = (h₁f u hu).order := by
intro hu
apply ENat.coe_toNat
by_contra C
rw [(h₁f u hu).order_eq_top_iff] at C
rw [← (h₁f u hu).frequently_zero_iff_eventually_zero] at C
obtain ⟨u₁, h₁u₁, h₂u₁⟩ := h₂f
rw [(h₁f.eqOn_zero_of_preconnected_of_frequently_eq_zero hU hu C) h₁u₁] at h₂u₁
tauto
theorem discreteZeros
{f : }
{U : Set }
(hU : IsPreconnected U)
(h₁f : AnalyticOnNhd f U)
(h₂f : ∃ u ∈ U, f u ≠ 0) :
DiscreteTopology ((U.restrict f)⁻¹' {0}) := by
simp_rw [← singletons_open_iff_discrete]
simp_rw [Metric.isOpen_singleton_iff]
intro z
let A := XX hU h₁f h₂f z.1.2
rw [eq_comm] at A
rw [AnalyticAt.order_eq_nat_iff] at A
obtain ⟨g, h₁g, h₂g, h₃g⟩ := A
rw [Metric.eventually_nhds_iff_ball] at h₃g
have : ∃ ε > 0, ∀ y ∈ Metric.ball (↑z) ε, g y ≠ 0 := by
have h₄g : ContinuousAt g z := AnalyticAt.continuousAt h₁g
have : {0}ᶜ ∈ nhds (g z) := by
exact compl_singleton_mem_nhds_iff.mpr h₂g
let F := h₄g.preimage_mem_nhds this
rw [Metric.mem_nhds_iff] at F
obtain ⟨ε, h₁ε, h₂ε⟩ := F
use ε
constructor; exact h₁ε
intro y hy
let G := h₂ε hy
simp at G
exact G
obtain ⟨ε₁, h₁ε₁⟩ := this
obtain ⟨ε₂, h₁ε₂, h₂ε₂⟩ := h₃g
use min ε₁ ε₂
constructor
· have : 0 < min ε₁ ε₂ := by
rw [lt_min_iff]
exact And.imp_right (fun _ => h₁ε₂) h₁ε₁
exact this
intro y
intro h₁y
have h₂y : ↑y ∈ Metric.ball (↑z) ε₂ := by
simp
calc dist y z
_ < min ε₁ ε₂ := by assumption
_ ≤ ε₂ := by exact min_le_right ε₁ ε₂
have h₃y : ↑y ∈ Metric.ball (↑z) ε₁ := by
simp
calc dist y z
_ < min ε₁ ε₂ := by assumption
_ ≤ ε₁ := by exact min_le_left ε₁ ε₂
have F := h₂ε₂ y.1 h₂y
have : f y = 0 := by exact y.2
rw [this] at F
simp at F
have : g y.1 ≠ 0 := by
exact h₁ε₁.2 y h₃y
simp [this] at F
ext
rw [sub_eq_zero] at F
tauto
theorem finiteZeros
{f : }
{U : Set }
(h₁U : IsPreconnected U)
(h₂U : IsCompact U)
(h₁f : AnalyticOnNhd f U)
(h₂f : ∃ u ∈ U, f u ≠ 0) :
Set.Finite (U.restrict f⁻¹' {0}) := by
have closedness : IsClosed (U.restrict f⁻¹' {0}) := by
apply IsClosed.preimage
apply continuousOn_iff_continuous_restrict.1
exact h₁f.continuousOn
exact isClosed_singleton
have : CompactSpace U := by
exact isCompact_iff_compactSpace.mp h₂U
apply (IsClosed.isCompact closedness).finite
exact discreteZeros h₁U h₁f h₂f
theorem AnalyticOnNhdCompact.eliminateZeros
{f : }
{U : Set }
(h₁U : IsPreconnected U)
(h₂U : IsCompact U)
(h₁f : AnalyticOnNhd f U)
(h₂f : ∃ u ∈ U, f u ≠ 0) :
∃ (g : ) (A : Finset U), AnalyticOnNhd g U ∧ (∀ z ∈ U, g z ≠ 0) ∧ ∀ z, f z = (∏ a ∈ A, (z - a) ^ (h₁f.order a).toNat) • g z := by
let A := (finiteZeros h₁U h₂U h₁f h₂f).toFinset
let n : U → := fun z ↦ (h₁f z z.2).order.toNat
have hn : ∀ a ∈ A, (h₁f a a.2).order = n a := by
intro a _
dsimp [n, AnalyticOnNhd.order]
rw [eq_comm]
apply XX h₁U
exact h₂f
obtain ⟨g, h₁g, h₂g, h₃g⟩ := AnalyticOnNhd.eliminateZeros (A := A) h₁f n hn
use g
use A
have inter : ∀ (z : ), f z = (∏ a ∈ A, (z - ↑a) ^ (h₁f (↑a) a.property).order.toNat) • g z := by
intro z
rw [h₃g z]
constructor
· exact h₁g
· constructor
· intro z h₁z
by_cases h₂z : ⟨z, h₁z⟩ ∈ ↑A.toSet
· exact h₂g ⟨z, h₁z⟩ h₂z
· have : f z ≠ 0 := by
by_contra C
have : ⟨z, h₁z⟩ ∈ ↑A.toSet := by
dsimp [A]
simp
exact C
tauto
rw [inter z] at this
exact right_ne_zero_of_smul this
· exact inter
theorem AnalyticOnNhdCompact.eliminateZeros₂
{f : }
{U : Set }
(h₁U : IsPreconnected U)
(h₂U : IsCompact U)
(h₁f : AnalyticOnNhd f U)
(h₂f : ∃ u ∈ U, f u ≠ 0) :
∃ (g : ), AnalyticOnNhd g U ∧ (∀ z ∈ U, g z ≠ 0) ∧ ∀ z, f z = (∏ a ∈ (finiteZeros h₁U h₂U h₁f h₂f).toFinset, (z - a) ^ (h₁f.order a).toNat) • g z := by
let A := (finiteZeros h₁U h₂U h₁f h₂f).toFinset
let n : U → := fun z ↦ (h₁f z z.2).order.toNat
have hn : ∀ a ∈ A, (h₁f a a.2).order = n a := by
intro a _
dsimp [n, AnalyticOnNhd.order]
rw [eq_comm]
apply XX h₁U
exact h₂f
obtain ⟨g, h₁g, h₂g, h₃g⟩ := AnalyticOnNhd.eliminateZeros (A := A) h₁f n hn
use g
have inter : ∀ (z : ), f z = (∏ a ∈ A, (z - ↑a) ^ (h₁f (↑a) a.property).order.toNat) • g z := by
intro z
rw [h₃g z]
constructor
· exact h₁g
· constructor
· intro z h₁z
by_cases h₂z : ⟨z, h₁z⟩ ∈ ↑A.toSet
· exact h₂g ⟨z, h₁z⟩ h₂z
· have : f z ≠ 0 := by
by_contra C
have : ⟨z, h₁z⟩ ∈ ↑A.toSet := by
dsimp [A]
simp
exact C
tauto
rw [inter z] at this
exact right_ne_zero_of_smul this
· exact h₃g
theorem AnalyticOnNhdCompact.eliminateZeros₁
{f : }
{U : Set }
(h₁U : IsPreconnected U)
(h₂U : IsCompact U)
(h₁f : AnalyticOnNhd f U)
(h₂f : ∃ u ∈ U, f u ≠ 0) :
∃ (g : ), AnalyticOnNhd g U ∧ (∀ z ∈ U, g z ≠ 0) ∧ ∀ z, f z = (∏ᶠ a, (z - a) ^ (h₁f.order a).toNat) • g z := by
let A := (finiteZeros h₁U h₂U h₁f h₂f).toFinset
let n : U → := fun z ↦ (h₁f z z.2).order.toNat
have hn : ∀ a ∈ A, (h₁f a a.2).order = n a := by
intro a _
dsimp [n, AnalyticOnNhd.order]
rw [eq_comm]
apply XX h₁U
exact h₂f
obtain ⟨g, h₁g, h₂g, h₃g⟩ := AnalyticOnNhd.eliminateZeros (A := A) h₁f n hn
use g
have inter : ∀ (z : ), f z = (∏ a ∈ A, (z - ↑a) ^ (h₁f (↑a) a.property).order.toNat) • g z := by
intro z
rw [h₃g z]
constructor
· exact h₁g
· constructor
· intro z h₁z
by_cases h₂z : ⟨z, h₁z⟩ ∈ ↑A.toSet
· exact h₂g ⟨z, h₁z⟩ h₂z
· have : f z ≠ 0 := by
by_contra C
have : ⟨z, h₁z⟩ ∈ ↑A.toSet := by
dsimp [A]
simp
exact C
tauto
rw [inter z] at this
exact right_ne_zero_of_smul this
· intro z
let φ : U → := fun a ↦ (z - ↑a) ^ (h₁f.order a).toNat
have hφ : Function.mulSupport φ ⊆ A := by
intro x hx
simp [φ] at hx
have : (h₁f.order x).toNat ≠ 0 := by
by_contra C
rw [C] at hx
simp at hx
simp [A]
exact AnalyticAt.supp_order_toNat (h₁f x x.2) this
rw [finprod_eq_prod_of_mulSupport_subset φ hφ]
rw [inter z]
rfl

View File

@ -1,77 +0,0 @@
/-
Copyright (c) 2024 Stefan Kebekus. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Stefan Kebekus
-/
import Mathlib.Analysis.InnerProductSpace.PiL2
/-!
# Canoncial Elements in Tensor Powers of Real Inner Product Spaces
Given an `InnerProductSpace E`, this file defines two canonical tensors, which
are relevant when for a coordinate-free definition of differential operators
such as the Laplacian.
* `InnerProductSpace.canonicalContravariantTensor E : E ⊗[] E →ₗ[] `. This is
the element corresponding to the inner product.
* If `E` is finite-dimensional, then `E ⊗[] E` is canonically isomorphic to its
dual. Accordingly, there exists an element
`InnerProductSpace.canonicalCovariantTensor E : E ⊗[] E` that corresponds to
`InnerProductSpace.canonicalContravariantTensor E` under this identification.
The theorem `InnerProductSpace.canonicalCovariantTensorRepresentation` shows
that `InnerProductSpace.canonicalCovariantTensor E` can be computed from any
orthonormal basis `v` as `∑ i, (v i) ⊗ₜ[] (v i)`.
-/
open InnerProductSpace
open TensorProduct
noncomputable def InnerProductSpace.canonicalContravariantTensor
{E : Type*} [NormedAddCommGroup E] [InnerProductSpace E]
: E ⊗[] E →ₗ[] := TensorProduct.lift bilinFormOfRealInner
noncomputable def InnerProductSpace.canonicalCovariantTensor
(E : Type*) [NormedAddCommGroup E] [InnerProductSpace E] [FiniteDimensional E]
: E ⊗[] E := ∑ i, ((stdOrthonormalBasis E) i) ⊗ₜ[] ((stdOrthonormalBasis E) i)
theorem InnerProductSpace.canonicalCovariantTensorRepresentation
(E : Type*) [NormedAddCommGroup E] [InnerProductSpace E] [FiniteDimensional E]
[Fintype ι]
(v : OrthonormalBasis ι E) :
InnerProductSpace.canonicalCovariantTensor E = ∑ i, (v i) ⊗ₜ[] (v i) := by
let w := stdOrthonormalBasis E
conv =>
right
arg 2
intro i
rw [← w.sum_repr' (v i)]
simp_rw [TensorProduct.sum_tmul, TensorProduct.tmul_sum, TensorProduct.smul_tmul_smul]
conv =>
right
rw [Finset.sum_comm]
arg 2
intro y
rw [Finset.sum_comm]
arg 2
intro x
rw [← Finset.sum_smul]
arg 1
arg 2
intro i
rw [← real_inner_comm (w x)]
simp_rw [OrthonormalBasis.sum_inner_mul_inner v]
have {i} : ∑ j, ⟪w i, w j⟫_ • w i ⊗ₜ[] w j = w i ⊗ₜ[] w i := by
rw [Fintype.sum_eq_single i, orthonormal_iff_ite.1 w.orthonormal]; simp
intro _ _; rw [orthonormal_iff_ite.1 w.orthonormal]; simp; tauto
simp_rw [this]
rfl

View File

@ -1,104 +0,0 @@
import Mathlib.Analysis.Calculus.ContDiff.Basic
import Mathlib.Analysis.InnerProductSpace.PiL2
/-
Let E, F, G be vector spaces over nontrivally normed field 𝕜, a homogeneus
linear differential operator of order n is a map that attaches to every point e
of E a linear evaluation
{Continuous 𝕜-multilinear maps E → F in n variables} → G
In other words, homogeneus linear differential operator of order n is an
instance of the type:
D : E → (ContinuousMultilinearMap 𝕜 (fun _ : Fin n ↦ E) F) →ₗ[𝕜] G
Given any map f : E → F, one obtains a map D f : E → G by sending a point e to
the evaluation (D e), applied to the n.th derivative of f at e
fun e ↦ D e (iteratedFDeriv 𝕜 n f e)
-/
@[ext]
class HomLinDiffOp
(𝕜 : Type*) [NontriviallyNormedField 𝕜]
(n : )
(E : Type*) [NormedAddCommGroup E] [NormedSpace 𝕜 E]
(F : Type*) [NormedAddCommGroup F] [NormedSpace 𝕜 F]
(G : Type*) [NormedAddCommGroup G] [NormedSpace 𝕜 G]
where
tensorfield : E → ( E [×n]→L[𝕜] F) →L[𝕜] G
-- tensorfield : E → (ContinuousMultilinearMap 𝕜 (fun _ : Fin n ↦ E) F) →ₗ[𝕜] G
namespace HomLinDiffOp
noncomputable def toFun
{𝕜 : Type*} [NontriviallyNormedField 𝕜]
{n : }
{E : Type*} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
{F : Type*} [NormedAddCommGroup F] [NormedSpace 𝕜 F]
{G : Type*} [NormedAddCommGroup G] [NormedSpace 𝕜 G]
(o : HomLinDiffOp 𝕜 n E F G)
: (E → F) → (E → G) :=
fun f z ↦ o.tensorfield z (iteratedFDeriv 𝕜 n f z)
noncomputable def Laplace
{𝕜 : Type*} [RCLike 𝕜]
{n : }
: HomLinDiffOp 𝕜 2 (EuclideanSpace 𝕜 (Fin n)) 𝕜 𝕜
where
tensorfield := by
intro _
let v := stdOrthonormalBasis 𝕜 (EuclideanSpace 𝕜 (Fin n))
rw [finrank_euclideanSpace_fin] at v
exact {
toFun := fun f' ↦ ∑ i, f' ![v i, v i]
map_add' := by
intro f₁ f₂
exact Finset.sum_add_distrib
map_smul' := by
intro m f
exact Eq.symm (Finset.mul_sum Finset.univ (fun i ↦ f ![v i, v i]) m)
cont := by
simp
apply continuous_finset_sum
intro i _
exact ContinuousMultilinearMap.continuous_eval_const ![v i, v i]
}
noncomputable def Gradient
{𝕜 : Type*} [RCLike 𝕜]
{n : }
: HomLinDiffOp 𝕜 1 (EuclideanSpace 𝕜 (Fin n)) 𝕜 (EuclideanSpace 𝕜 (Fin n))
where
tensorfield := by
intro _
let v := stdOrthonormalBasis 𝕜 (EuclideanSpace 𝕜 (Fin n))
rw [finrank_euclideanSpace_fin] at v
exact {
toFun := fun f' ↦ ∑ i, (f' ![v i]) • (v i)
map_add' := by
intro f₁ f₂
simp; simp_rw [add_smul, Finset.sum_add_distrib]
map_smul' := by
intro m f
simp; simp_rw [Finset.smul_sum, ←smul_assoc,smul_eq_mul]
cont := by
simp
apply continuous_finset_sum
intro i _
apply Continuous.smul
exact ContinuousMultilinearMap.continuous_eval_const ![v i]
exact continuous_const
}
end HomLinDiffOp

View File

@ -1,176 +0,0 @@
import Mathlib.Analysis.Complex.TaylorSeries
import Nevanlinna.cauchyRiemann
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace E]
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace F]
variable {G : Type*} [NormedAddCommGroup G] [NormedSpace G]
def HolomorphicAt (f : E → F) (x : E) : Prop :=
∃ s ∈ nhds x, ∀ z ∈ s, DifferentiableAt f z
theorem HolomorphicAt_iff
{f : E → F}
{x : E} :
HolomorphicAt f x ↔ ∃ s :
Set E, IsOpen s ∧ x ∈ s ∧ (∀ z ∈ s, DifferentiableAt f z) := by
constructor
· intro hf
obtain ⟨t, h₁t, h₂t⟩ := hf
obtain ⟨s, h₁s, h₂s, h₃s⟩ := mem_nhds_iff.1 h₁t
use s
constructor
· assumption
· constructor
· assumption
· intro z hz
exact h₂t z (h₁s hz)
· intro hyp
obtain ⟨s, h₁s, h₂s, hf⟩ := hyp
use s
constructor
· apply (IsOpen.mem_nhds_iff h₁s).2 h₂s
· assumption
theorem HolomorphicAt_analyticAt
[CompleteSpace F]
{f : → F}
{x : } :
HolomorphicAt f x → AnalyticAt f x := by
intro hf
obtain ⟨s, h₁s, h₂s, h₃s⟩ := HolomorphicAt_iff.1 hf
apply DifferentiableOn.analyticAt (s := s)
intro z hz
apply DifferentiableAt.differentiableWithinAt
apply h₃s
exact hz
exact IsOpen.mem_nhds h₁s h₂s
theorem HolomorphicAt_differentiableAt
{f : E → F}
{x : E} :
HolomorphicAt f x → DifferentiableAt f x := by
intro hf
obtain ⟨s, _, h₂s, h₃s⟩ := HolomorphicAt_iff.1 hf
exact h₃s x h₂s
theorem HolomorphicAt_isOpen
(f : E → F) :
IsOpen { x : E | HolomorphicAt f x } := by
rw [← subset_interior_iff_isOpen]
intro x hx
simp at hx
obtain ⟨s, h₁s, h₂s, h₃s⟩ := HolomorphicAt_iff.1 hx
use s
constructor
· simp
constructor
· exact h₁s
· intro x hx
simp
use s
constructor
· exact IsOpen.mem_nhds h₁s hx
· exact h₃s
· exact h₂s
theorem HolomorphicAt_comp
{g : E → F}
{f : F → G}
{z : E}
(hf : HolomorphicAt f (g z))
(hg : HolomorphicAt g z) :
HolomorphicAt (f ∘ g) z := by
obtain ⟨UE, h₁UE, h₂UE⟩ := hg
obtain ⟨UF, h₁UF, h₂UF⟩ := hf
use UE ∩ g⁻¹' UF
constructor
· simp
constructor
· assumption
· apply ContinuousAt.preimage_mem_nhds
apply (h₂UE z (mem_of_mem_nhds h₁UE)).continuousAt
assumption
· intro x hx
apply DifferentiableAt.comp
apply h₂UF
exact hx.2
apply h₂UE
exact hx.1
theorem HolomorphicAt_neg
{f : E → F}
{z : E}
(hf : HolomorphicAt f z) :
HolomorphicAt (-f) z := by
obtain ⟨UF, h₁UF, h₂UF⟩ := hf
use UF
constructor
· assumption
· intro z hz
apply differentiableAt_neg_iff.mp
simp
exact h₂UF z hz
theorem HolomorphicAt_contDiffAt
[CompleteSpace F]
{f : → F}
{z : }
(hf : HolomorphicAt f z) :
ContDiffAt 2 f z := by
let t := {x | HolomorphicAt f x}
have ht : IsOpen t := HolomorphicAt_isOpen f
have hz : z ∈ t := by exact hf
-- ContDiffAt 2 f z
apply ContDiffOn.contDiffAt _ ((IsOpen.mem_nhds_iff ht).2 hz)
suffices h : ContDiffOn 2 f t from by
apply ContDiffOn.restrict_scalars h
apply DifferentiableOn.contDiffOn _ ht
intro w hw
apply DifferentiableAt.differentiableWithinAt
exact HolomorphicAt_differentiableAt hw
theorem CauchyRiemann'₅
{f : → F}
{z : }
(h : DifferentiableAt f z) :
partialDeriv Complex.I f z = Complex.I • partialDeriv 1 f z := by
unfold partialDeriv
conv =>
left
rw [DifferentiableAt.fderiv_restrictScalars h]
simp
rw [← mul_one Complex.I]
rw [← smul_eq_mul]
conv =>
right
right
rw [DifferentiableAt.fderiv_restrictScalars h]
simp
theorem CauchyRiemann'₆
{f : → F}
{z : }
(h : HolomorphicAt f z) :
partialDeriv Complex.I f =ᶠ[nhds z] Complex.I • partialDeriv 1 f := by
obtain ⟨s, h₁s, hz, h₂f⟩ := HolomorphicAt_iff.1 h
apply Filter.eventuallyEq_iff_exists_mem.2
use s
constructor
· exact IsOpen.mem_nhds h₁s hz
· intro w hw
apply CauchyRiemann'₅
exact h₂f w hw

View File

@ -1,358 +0,0 @@
import Init.Classical
import Mathlib.Analysis.Analytic.Meromorphic
import Mathlib.Topology.ContinuousOn
import Mathlib.Analysis.Analytic.IsolatedZeros
import Nevanlinna.holomorphic
import Nevanlinna.analyticOnNhd_zeroSet
noncomputable def zeroDivisor
(f : ) :
:= by
intro z
by_cases hf : AnalyticAt f z
· exact hf.order.toNat
· exact 0
theorem analyticAtZeroDivisorSupport
{f : }
{z : }
(h : z ∈ Function.support (zeroDivisor f)) :
AnalyticAt f z := by
by_contra h₁f
simp at h
dsimp [zeroDivisor] at h
simp [h₁f] at h
theorem zeroDivisor_eq_ord_AtZeroDivisorSupport
{f : }
{z : }
(h : z ∈ Function.support (zeroDivisor f)) :
zeroDivisor f z = (analyticAtZeroDivisorSupport h).order.toNat := by
unfold zeroDivisor
simp [analyticAtZeroDivisorSupport h]
theorem zeroDivisor_eq_ord_AtZeroDivisorSupport'
{f : }
{z : }
(h : z ∈ Function.support (zeroDivisor f)) :
zeroDivisor f z = (analyticAtZeroDivisorSupport h).order := by
unfold zeroDivisor
simp [analyticAtZeroDivisorSupport h]
sorry
lemma toNatEqSelf_iff {n : ℕ∞} : n.toNat = n ↔ ∃ m : , m = n := by
constructor
· intro H₁
rw [← ENat.some_eq_coe, ← WithTop.ne_top_iff_exists]
by_contra H₂
rw [H₂] at H₁
simp at H₁
· intro H
obtain ⟨m, hm⟩ := H
rw [← hm]
simp
lemma natural_if_toNatNeZero {n : ℕ∞} : n.toNat ≠ 0 → ∃ m : , m = n := by
rw [← ENat.some_eq_coe, ← WithTop.ne_top_iff_exists]
contrapose; simp; tauto
theorem zeroDivisor_localDescription
{f : }
{z₀ : }
(h : z₀ ∈ Function.support (zeroDivisor f)) :
∃ (g : ), AnalyticAt g z₀ ∧ g z₀ ≠ 0 ∧ ∀ᶠ (z : ) in nhds z₀, f z = (z - z₀) ^ (zeroDivisor f z₀) • g z := by
have A : zeroDivisor f ↑z₀ ≠ 0 := by exact h
let B := zeroDivisor_eq_ord_AtZeroDivisorSupport h
rw [B] at A
have C := natural_if_toNatNeZero A
obtain ⟨m, hm⟩ := C
have h₂m : m ≠ 0 := by
rw [← hm] at A
simp at A
assumption
rw [eq_comm] at hm
let E := AnalyticAt.order_eq_nat_iff (analyticAtZeroDivisorSupport h) m
let F := hm
rw [E] at F
have : m = zeroDivisor f z₀ := by
rw [B, hm]
simp
rwa [this] at F
theorem zeroDivisor_zeroSet
{f : }
{z₀ : }
(h : z₀ ∈ Function.support (zeroDivisor f)) :
f z₀ = 0 := by
obtain ⟨g, _, _, h₃⟩ := zeroDivisor_localDescription h
rw [Filter.Eventually.self_of_nhds h₃]
simp
left
exact h
theorem zeroDivisor_support_iff
{f : }
{z₀ : } :
z₀ ∈ Function.support (zeroDivisor f) ↔
f z₀ = 0 ∧
AnalyticAt f z₀ ∧
∃ (g : ), AnalyticAt g z₀ ∧ g z₀ ≠ 0 ∧ ∀ᶠ (z : ) in nhds z₀, f z = (z - z₀) ^ (zeroDivisor f z₀) • g z := by
constructor
· intro hz
constructor
· exact zeroDivisor_zeroSet hz
· constructor
· exact analyticAtZeroDivisorSupport hz
· exact zeroDivisor_localDescription hz
· intro ⟨h₁, h₂, h₃⟩
have : zeroDivisor f z₀ = (h₂.order).toNat := by
unfold zeroDivisor
simp [h₂]
simp [this]
simp [(h₂.order_eq_nat_iff (zeroDivisor f z₀)).2 h₃]
obtain ⟨g, h₁g, h₂g, h₃g⟩ := h₃
rw [Filter.Eventually.self_of_nhds h₃g] at h₁
simp [h₂g] at h₁
assumption
theorem topOnPreconnected
{f : }
{U : Set }
(hU : IsPreconnected U)
(h₁f : AnalyticOnNhd f U)
(h₂f : ∃ z ∈ U, f z ≠ 0) :
∀ (hz : z ∈ U), (h₁f z hz).order ≠ := by
by_contra H
push_neg at H
obtain ⟨z', hz'⟩ := H
rw [AnalyticAt.order_eq_top_iff] at hz'
rw [← AnalyticAt.frequently_zero_iff_eventually_zero (h₁f z z')] at hz'
have A := AnalyticOnNhd.eqOn_zero_of_preconnected_of_frequently_eq_zero h₁f hU z' hz'
tauto
theorem supportZeroSet
{f : }
{U : Set }
(hU : IsPreconnected U)
(h₁f : AnalyticOnNhd f U)
(h₂f : ∃ z ∈ U, f z ≠ 0) :
U ∩ Function.support (zeroDivisor f) = U ∩ f⁻¹' {0} := by
ext x
constructor
· intro hx
constructor
· exact hx.1
exact zeroDivisor_zeroSet hx.2
· simp
intro h₁x h₂x
constructor
· exact h₁x
· let A := zeroDivisor_support_iff (f := f) (z₀ := x)
simp at A
rw [A]
constructor
· exact h₂x
· constructor
· exact h₁f x h₁x
· have B := AnalyticAt.order_eq_nat_iff (h₁f x h₁x) (zeroDivisor f x)
simp at B
rw [← B]
dsimp [zeroDivisor]
simp [h₁f x h₁x]
refine Eq.symm (ENat.coe_toNat ?h.mpr.right.right.right.a)
exact topOnPreconnected hU h₁f h₂f h₁x
/-
theorem discreteZeros
{f : } :
DiscreteTopology (Function.support (zeroDivisor f)) := by
simp_rw [← singletons_open_iff_discrete, Metric.isOpen_singleton_iff]
intro z
have A : zeroDivisor f ↑z ≠ 0 := by exact z.2
let B := zeroDivisor_eq_ord_AtZeroDivisorSupport z.2
rw [B] at A
have C := natural_if_toNatNeZero A
obtain ⟨m, hm⟩ := C
have h₂m : m ≠ 0 := by
rw [← hm] at A
simp at A
assumption
rw [eq_comm] at hm
let E := AnalyticAt.order_eq_nat_iff (analyticAtZeroDivisorSupport z.2) m
rw [E] at hm
obtain ⟨g, h₁g, h₂g, h₃g⟩ := hm
rw [Metric.eventually_nhds_iff_ball] at h₃g
have : ∃ ε > 0, ∀ y ∈ Metric.ball (↑z) ε, g y ≠ 0 := by
have h₄g : ContinuousAt g z := AnalyticAt.continuousAt h₁g
have : {0}ᶜ ∈ nhds (g z) := by
exact compl_singleton_mem_nhds_iff.mpr h₂g
let F := h₄g.preimage_mem_nhds this
rw [Metric.mem_nhds_iff] at F
obtain ⟨ε, h₁ε, h₂ε⟩ := F
use ε
constructor; exact h₁ε
intro y hy
let G := h₂ε hy
simp at G
exact G
obtain ⟨ε₁, h₁ε₁⟩ := this
obtain ⟨ε₂, h₁ε₂, h₂ε₂⟩ := h₃g
use min ε₁ ε₂
constructor
· have : 0 < min ε₁ ε₂ := by
rw [lt_min_iff]
exact And.imp_right (fun _ => h₁ε₂) h₁ε₁
exact this
intro y
intro h₁y
have h₂y : ↑y ∈ Metric.ball (↑z) ε₂ := by
simp
calc dist y z
_ < min ε₁ ε₂ := by assumption
_ ≤ ε₂ := by exact min_le_right ε₁ ε₂
have h₃y : ↑y ∈ Metric.ball (↑z) ε₁ := by
simp
calc dist y z
_ < min ε₁ ε₂ := by assumption
_ ≤ ε₁ := by exact min_le_left ε₁ ε₂
let F := h₂ε₂ y.1 h₂y
rw [zeroDivisor_zeroSet y.2] at F
simp at F
simp [h₂m] at F
have : g y.1 ≠ 0 := by
exact h₁ε₁.2 y h₃y
simp [this] at F
ext
rwa [sub_eq_zero] at F
-/
theorem zeroDivisor_finiteOnCompact
{f : }
{U : Set }
(hU : IsPreconnected U)
(h₁f : AnalyticOnNhd f U)
(h₂f : ∃ z ∈ U, f z ≠ 0) -- not needed!
(h₂U : IsCompact U) :
Set.Finite (U ∩ Function.support (zeroDivisor f)) := by
have hinter : IsCompact (U ∩ Function.support (zeroDivisor f)) := by
apply IsCompact.of_isClosed_subset h₂U
rw [supportZeroSet]
apply h₁f.continuousOn.preimage_isClosed_of_isClosed
exact IsCompact.isClosed h₂U
exact isClosed_singleton
assumption
assumption
assumption
exact Set.inter_subset_left
apply hinter.finite
apply DiscreteTopology.of_subset (s := Function.support (zeroDivisor f))
exact discreteZeros (f := f)
exact Set.inter_subset_right
noncomputable def zeroDivisorDegree
{f : }
{U : Set }
(h₁U : IsPreconnected U) -- not needed!
(h₂U : IsCompact U)
(h₁f : AnalyticOnNhd f U)
(h₂f : ∃ z ∈ U, f z ≠ 0) : -- not needed!
:= (zeroDivisor_finiteOnCompact h₁U h₁f h₂f h₂U).toFinset.card
lemma zeroDivisorDegreeZero
{f : }
{U : Set }
(h₁U : IsPreconnected U) -- not needed!
(h₂U : IsCompact U)
(h₁f : AnalyticOnNhd f U)
(h₂f : ∃ z ∈ U, f z ≠ 0) : -- not needed!
0 = zeroDivisorDegree h₁U h₂U h₁f h₂f ↔ U ∩ (zeroDivisor f).support = ∅ := by
sorry
lemma eliminatingZeros₀
{U : Set }
(h₁U : IsPreconnected U)
(h₂U : IsCompact U) :
∀ n : , ∀ f : , (h₁f : AnalyticOnNhd f U) → (h₂f : ∃ z ∈ U, f z ≠ 0) →
(n = zeroDivisorDegree h₁U h₂U h₁f h₂f) →
∃ F : , (AnalyticOnNhd F U) ∧ (f = F * ∏ᶠ a ∈ (U ∩ (zeroDivisor f).support), fun z ↦ (z - a) ^ (zeroDivisor f a)) := by
intro n
induction' n with n ih
-- case zero
intro f h₁f h₂f h₃f
use f
rw [zeroDivisorDegreeZero] at h₃f
rw [h₃f]
simpa
-- case succ
intro f h₁f h₂f h₃f
let Supp := (zeroDivisor_finiteOnCompact h₁U h₁f h₂f h₂U).toFinset
have : Supp.Nonempty := by
rw [← Finset.one_le_card]
calc 1
_ ≤ n + 1 := by exact Nat.le_add_left 1 n
_ = zeroDivisorDegree h₁U h₂U h₁f h₂f := by exact h₃f
_ = Supp.card := by rfl
obtain ⟨z₀, hz₀⟩ := this
dsimp [Supp] at hz₀
simp only [Set.Finite.mem_toFinset, Set.mem_inter_iff] at hz₀
let A := AnalyticOnNhd.order_eq_nat_iff h₁f hz₀.1 (zeroDivisor f z₀)
let B := zeroDivisor_eq_ord_AtZeroDivisorSupport hz₀.2
let B := zeroDivisor_eq_ord_AtZeroDivisorSupport' hz₀.2
rw [eq_comm] at B
let C := A B
obtain ⟨g₀, h₁g₀, h₂g₀, h₃g₀⟩ := C
have h₄g₀ : ∃ z ∈ U, g₀ z ≠ 0 := by sorry
have h₅g₀ : n = zeroDivisorDegree h₁U h₂U h₁g₀ h₄g₀ := by sorry
obtain ⟨F, h₁F, h₂F⟩ := ih g₀ h₁g₀ h₄g₀ h₅g₀
use F
constructor
· assumption
·
sorry

View File

@ -1,449 +0,0 @@
import Mathlib.Analysis.Complex.CauchyIntegral
import Mathlib.Analysis.Analytic.IsolatedZeros
import Nevanlinna.analyticOnNhd_zeroSet
import Nevanlinna.harmonicAt_examples
import Nevanlinna.harmonicAt_meanValue
import Nevanlinna.specialFunctions_CircleIntegral_affine
open Real
theorem jensen_case_R_eq_one
(f : )
(h₁f : AnalyticOnNhd f (Metric.closedBall 0 1))
(h₂f : f 0 ≠ 0) :
log ‖f 0‖ = -∑ᶠ s, (h₁f.order s).toNat * log (‖s.1‖⁻¹) + (2 * π)⁻¹ * ∫ (x : ) in (0)..(2 * π), log ‖f (circleMap 0 1 x)‖ := by
have h₁U : IsPreconnected (Metric.closedBall (0 : ) 1) :=
(convex_closedBall (0 : ) 1).isPreconnected
have h₂U : IsCompact (Metric.closedBall (0 : ) 1) :=
isCompact_closedBall 0 1
have h'₂f : ∃ u ∈ (Metric.closedBall (0 : ) 1), f u ≠ 0 := by
use 0; simp; exact h₂f
obtain ⟨F, h₁F, h₂F, h₃F⟩ := AnalyticOnNhdCompact.eliminateZeros₂ h₁U h₂U h₁f h'₂f
have h'₁F : ∀ z ∈ Metric.closedBall (0 : ) 1, HolomorphicAt F z := by
intro z h₁z
apply AnalyticAt.holomorphicAt
exact h₁F z h₁z
let G := fun z ↦ log ‖F z‖ + ∑ s ∈ (finiteZeros h₁U h₂U h₁f h'₂f).toFinset, (h₁f.order s).toNat * log ‖z - s‖
have decompose_f : ∀ z ∈ Metric.closedBall (0 : ) 1, f z ≠ 0 → log ‖f z‖ = G z := by
intro z h₁z h₂z
conv =>
left
arg 1
rw [h₃F]
rw [smul_eq_mul]
rw [norm_mul]
rw [norm_prod]
left
arg 2
intro b
rw [norm_pow]
simp only [Complex.norm_eq_abs, Finset.univ_eq_attach]
rw [Real.log_mul]
rw [Real.log_prod]
conv =>
left
left
arg 2
intro s
rw [Real.log_pow]
dsimp [G]
abel
-- ∀ x ∈ ⋯.toFinset, Complex.abs (z - ↑x) ^ (h'₁f.order x).toNat ≠ 0
have : ∀ x ∈ (finiteZeros h₁U h₂U h₁f h'₂f).toFinset, Complex.abs (z - ↑x) ^ (h₁f.order x).toNat ≠ 0 := by
intro s hs
simp at hs
simp
intro h₂s
rw [h₂s] at h₂z
tauto
exact this
-- ∏ x ∈ ⋯.toFinset, Complex.abs (z - ↑x) ^ (h'₁f.order x).toNat ≠ 0
have : ∀ x ∈ (finiteZeros h₁U h₂U h₁f h'₂f).toFinset, Complex.abs (z - ↑x) ^ (h₁f.order x).toNat ≠ 0 := by
intro s hs
simp at hs
simp
intro h₂s
rw [h₂s] at h₂z
tauto
rw [Finset.prod_ne_zero_iff]
exact this
-- Complex.abs (F z) ≠ 0
simp
exact h₂F z h₁z
have int_logAbs_f_eq_int_G : ∫ (x : ) in (0)..2 * π, log ‖f (circleMap 0 1 x)‖ = ∫ (x : ) in (0)..2 * π, G (circleMap 0 1 x) := by
rw [intervalIntegral.integral_congr_ae]
rw [MeasureTheory.ae_iff]
apply Set.Countable.measure_zero
simp
have t₀ : {a | a ∈ Ι 0 (2 * π) ∧ ¬log ‖f (circleMap 0 1 a)‖ = G (circleMap 0 1 a)}
⊆ (circleMap 0 1)⁻¹' (Metric.closedBall 0 1 ∩ f⁻¹' {0}) := by
intro a ha
simp at ha
simp
by_contra C
have : (circleMap 0 1 a) ∈ Metric.closedBall 0 1 :=
circleMap_mem_closedBall 0 (zero_le_one' ) a
exact ha.2 (decompose_f (circleMap 0 1 a) this C)
apply Set.Countable.mono t₀
apply Set.Countable.preimage_circleMap
apply Set.Finite.countable
let A := finiteZeros h₁U h₂U h₁f h'₂f
have : (Metric.closedBall 0 1 ∩ f ⁻¹' {0}) = (Metric.closedBall 0 1).restrict f ⁻¹' {0} := by
ext z
simp
tauto
rw [this]
exact Set.Finite.image Subtype.val A
exact Ne.symm (zero_ne_one' )
have decompose_int_G : ∫ (x : ) in (0)..2 * π, G (circleMap 0 1 x)
= (∫ (x : ) in (0)..2 * π, log (Complex.abs (F (circleMap 0 1 x))))
+ ∑ x ∈ (finiteZeros h₁U h₂U h₁f h'₂f).toFinset, (h₁f.order x).toNat * ∫ (x_1 : ) in (0)..2 * π, log (Complex.abs (circleMap 0 1 x_1 - ↑x)) := by
dsimp [G]
rw [intervalIntegral.integral_add]
rw [intervalIntegral.integral_finset_sum]
simp_rw [intervalIntegral.integral_const_mul]
-- ∀ i ∈ (finiteZeros h₁U h₂U h'₁f h'₂f).toFinset,
-- IntervalIntegrable (fun x => (h'₁f.order i).toNat *
-- log (Complex.abs (circleMap 0 1 x - ↑i))) MeasureTheory.volume 0 (2 * π)
intro i _
apply IntervalIntegrable.const_mul
--simp at this
by_cases h₂i : ‖i.1‖ = 1
-- case pos
exact int'₂ h₂i
-- case neg
apply Continuous.intervalIntegrable
apply continuous_iff_continuousAt.2
intro x
have : (fun x => log (Complex.abs (circleMap 0 1 x - ↑i))) = log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 1 x - ↑i) :=
rfl
rw [this]
apply ContinuousAt.comp
apply Real.continuousAt_log
simp
by_contra ha'
conv at h₂i =>
arg 1
rw [← ha']
rw [Complex.norm_eq_abs]
rw [abs_circleMap_zero 1 x]
simp
tauto
apply ContinuousAt.comp
apply Complex.continuous_abs.continuousAt
fun_prop
-- IntervalIntegrable (fun x => log (Complex.abs (F (circleMap 0 1 x)))) MeasureTheory.volume 0 (2 * π)
apply Continuous.intervalIntegrable
apply continuous_iff_continuousAt.2
intro x
have : (fun x => log (Complex.abs (F (circleMap 0 1 x)))) = log ∘ Complex.abs ∘ F ∘ (fun x ↦ circleMap 0 1 x) :=
rfl
rw [this]
apply ContinuousAt.comp
apply Real.continuousAt_log
simp [h₂F]
-- ContinuousAt (⇑Complex.abs ∘ F ∘ fun x => circleMap 0 1 x) x
apply ContinuousAt.comp
apply Complex.continuous_abs.continuousAt
apply ContinuousAt.comp
apply DifferentiableAt.continuousAt (𝕜 := )
apply HolomorphicAt.differentiableAt
simp [h'₁F]
-- ContinuousAt (fun x => circleMap 0 1 x) x
apply Continuous.continuousAt
apply continuous_circleMap
have : (fun x => ∑ s ∈ (finiteZeros h₁U h₂U h₁f h'₂f).toFinset, (h₁f.order s).toNat * log (Complex.abs (circleMap 0 1 x - ↑s)))
= ∑ s ∈ (finiteZeros h₁U h₂U h₁f h'₂f).toFinset, (fun x => (h₁f.order s).toNat * log (Complex.abs (circleMap 0 1 x - ↑s))) := by
funext x
simp
rw [this]
apply IntervalIntegrable.sum
intro i _
apply IntervalIntegrable.const_mul
--have : i.1 ∈ Metric.closedBall (0 : ) 1 := i.2
--simp at this
by_cases h₂i : ‖i.1‖ = 1
-- case pos
exact int'₂ h₂i
-- case neg
--have : i.1 ∈ Metric.ball (0 : ) 1 := by sorry
apply Continuous.intervalIntegrable
apply continuous_iff_continuousAt.2
intro x
have : (fun x => log (Complex.abs (circleMap 0 1 x - ↑i))) = log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 1 x - ↑i) :=
rfl
rw [this]
apply ContinuousAt.comp
apply Real.continuousAt_log
simp
by_contra ha'
conv at h₂i =>
arg 1
rw [← ha']
rw [Complex.norm_eq_abs]
rw [abs_circleMap_zero 1 x]
simp
tauto
apply ContinuousAt.comp
apply Complex.continuous_abs.continuousAt
fun_prop
have t₁ : (∫ (x : ) in (0)..2 * Real.pi, log ‖F (circleMap 0 1 x)‖) = 2 * Real.pi * log ‖F 0‖ := by
let logAbsF := fun w ↦ Real.log ‖F w‖
have t₀ : ∀ z ∈ Metric.closedBall 0 1, HarmonicAt logAbsF z := by
intro z hz
apply logabs_of_holomorphicAt_is_harmonic
apply h'₁F z hz
exact h₂F z hz
apply harmonic_meanValue₁ 1 Real.zero_lt_one t₀
simp_rw [← Complex.norm_eq_abs] at decompose_int_G
rw [t₁] at decompose_int_G
conv at decompose_int_G =>
right
right
arg 2
intro x
right
rw [int₃ x.2]
simp at decompose_int_G
rw [int_logAbs_f_eq_int_G]
rw [decompose_int_G]
rw [h₃F]
simp
have {l : } : π⁻¹ * 2⁻¹ * (2 * π * l) = l := by
calc π⁻¹ * 2⁻¹ * (2 * π * l)
_ = π⁻¹ * (2⁻¹ * 2) * π * l := by ring
_ = π⁻¹ * π * l := by ring
_ = (π⁻¹ * π) * l := by ring
_ = 1 * l := by
rw [inv_mul_cancel₀]
exact pi_ne_zero
_ = l := by simp
rw [this]
rw [log_mul]
rw [log_prod]
simp
rw [finsum_eq_sum_of_support_subset _ (s := (finiteZeros h₁U h₂U h₁f h'₂f).toFinset)]
simp
simp
intro x ⟨h₁x, _⟩
simp
dsimp [AnalyticOnNhd.order] at h₁x
simp only [Function.mem_support, ne_eq, Nat.cast_eq_zero, not_or] at h₁x
exact AnalyticAt.supp_order_toNat (AnalyticOnNhd.order.proof_1 h₁f x) h₁x
--
intro x hx
simp at hx
simp
intro h₁x
nth_rw 1 [← h₁x] at h₂f
tauto
--
rw [Finset.prod_ne_zero_iff]
intro x hx
simp at hx
simp
intro h₁x
nth_rw 1 [← h₁x] at h₂f
tauto
--
simp
apply h₂F
simp
lemma const_mul_circleMap_zero
{R θ : } :
circleMap 0 R θ = R * circleMap 0 1 θ := by
rw [circleMap_zero, circleMap_zero]
simp
theorem jensen
{R : }
(hR : 0 < R)
(f : )
(h₁f : AnalyticOnNhd f (Metric.closedBall 0 R))
(h₂f : f 0 ≠ 0) :
log ‖f 0‖ = -∑ᶠ s, (h₁f.order s).toNat * log (R * ‖s.1‖⁻¹) + (2 * π)⁻¹ * ∫ (x : ) in (0)..(2 * π), log ‖f (circleMap 0 R x)‖ := by
let : ≃L[] :=
{
toFun := fun x ↦ R * x
map_add' := fun x y => DistribSMul.smul_add R x y
map_smul' := fun m x => mul_smul_comm m (↑R) x
invFun := fun x ↦ R⁻¹ * x
left_inv := by
intro x
simp
rw [← mul_assoc, mul_comm, inv_mul_cancel₀, mul_one]
simp
exact ne_of_gt hR
right_inv := by
intro x
simp
rw [← mul_assoc, mul_inv_cancel₀, one_mul]
simp
exact ne_of_gt hR
continuous_toFun := continuous_const_smul R
continuous_invFun := continuous_const_smul R⁻¹
}
let F := f ∘
have h₁F : AnalyticOnNhd F (Metric.closedBall 0 1) := by
apply AnalyticOnNhd.comp (t := Metric.closedBall 0 R)
exact h₁f
intro x _
apply .toContinuousLinearMap.analyticAt x
intro x hx
have : x = R * x := by rfl
rw [this]
simp
simp at hx
rw [abs_of_pos hR]
calc R * Complex.abs x
_ ≤ R * 1 := by exact (mul_le_mul_iff_of_pos_left hR).mpr hx
_ = R := by simp
have h₂F : F 0 ≠ 0 := by
dsimp [F]
have : 0 = R * 0 := by rfl
rw [this]
simpa
let A := jensen_case_R_eq_one F h₁F h₂F
dsimp [F] at A
have {x : } : x = R * x := by rfl
repeat
simp_rw [this] at A
simp at A
simp
rw [A]
simp_rw [← const_mul_circleMap_zero]
simp
let e : (Metric.closedBall (0 : ) 1) → (Metric.closedBall (0 : ) R) := by
intro ⟨x, hx⟩
have hy : R • x ∈ Metric.closedBall (0 : ) R := by
simp
simp at hx
have : R = |R| := by exact Eq.symm (abs_of_pos hR)
rw [← this]
norm_num
calc R * Complex.abs x
_ ≤ R * 1 := by exact (mul_le_mul_iff_of_pos_left hR).mpr hx
_ = R := by simp
exact ⟨R • x, hy⟩
let e' : (Metric.closedBall (0 : ) R) → (Metric.closedBall (0 : ) 1) := by
intro ⟨x, hx⟩
have hy : R⁻¹ • x ∈ Metric.closedBall (0 : ) 1 := by
simp
simp at hx
have : R = |R| := by exact Eq.symm (abs_of_pos hR)
rw [← this]
norm_num
calc R⁻¹ * Complex.abs x
_ ≤ R⁻¹ * R := by
apply mul_le_mul_of_nonneg_left hx
apply inv_nonneg.mpr
exact abs_eq_self.mp (id (Eq.symm this))
_ = 1 := by
apply inv_mul_cancel₀
exact Ne.symm (ne_of_lt hR)
exact ⟨R⁻¹ • x, hy⟩
apply finsum_eq_of_bijective e
apply Function.bijective_iff_has_inverse.mpr
use e'
constructor
· apply Function.leftInverse_iff_comp.mpr
funext x
dsimp only [e, e', id_eq, eq_mp_eq_cast, Function.comp_apply]
conv =>
left
arg 1
rw [← smul_assoc, smul_eq_mul]
rw [inv_mul_cancel₀ (Ne.symm (ne_of_lt hR))]
rw [one_smul]
· apply Function.rightInverse_iff_comp.mpr
funext x
dsimp only [e, e', id_eq, eq_mp_eq_cast, Function.comp_apply]
conv =>
left
arg 1
rw [← smul_assoc, smul_eq_mul]
rw [mul_inv_cancel₀ (Ne.symm (ne_of_lt hR))]
rw [one_smul]
intro x
simp
by_cases hx : x = (0 : )
rw [hx]
simp
rw [log_mul, log_mul, log_inv, log_inv]
have : R = |R| := by exact Eq.symm (abs_of_pos hR)
rw [← this]
simp
left
congr 1
dsimp [AnalyticOnNhd.order]
rw [← AnalyticAt.order_comp_CLE ]
--
simpa
--
have : R = |R| := by exact Eq.symm (abs_of_pos hR)
rw [← this]
apply inv_ne_zero
exact Ne.symm (ne_of_lt hR)
--
exact Ne.symm (ne_of_lt hR)
--
simp
constructor
· assumption
· exact Ne.symm (ne_of_lt hR)

View File

@ -1,666 +0,0 @@
import Mathlib.Analysis.Complex.TaylorSeries
import Mathlib.Analysis.SpecialFunctions.Integrals
import Mathlib.MeasureTheory.Integral.DivergenceTheorem
import Mathlib.MeasureTheory.Integral.IntervalIntegral
import Mathlib.MeasureTheory.Function.LocallyIntegrable
import Nevanlinna.partialDeriv
import Nevanlinna.cauchyRiemann
/-
noncomputable def partialDeriv
{E : Type*} [NormedAddCommGroup E] [NormedSpace E]
{F : Type*} [NormedAddCommGroup F] [NormedSpace F] : E → (E → F) → (E → F) :=
fun v ↦ (fun f ↦ (fun w ↦ fderiv f w v))
theorem partialDeriv_compContLinAt
{E : Type*} [NormedAddCommGroup E] [NormedSpace E]
{F : Type*} [NormedAddCommGroup F] [NormedSpace F]
{G : Type*} [NormedAddCommGroup G] [NormedSpace G]
{f : E → F}
{l : F →L[] G}
{v : E}
{x : E}
(h : DifferentiableAt f x) :
(partialDeriv v (l ∘ f)) x = (l ∘ partialDeriv v f) x:= by
unfold partialDeriv
rw [fderiv.comp x (ContinuousLinearMap.differentiableAt l) h]
simp
theorem partialDeriv_compCLE
{E : Type*} [NormedAddCommGroup E] [NormedSpace E]
{F : Type*} [NormedAddCommGroup F] [NormedSpace F]
{G : Type*} [NormedAddCommGroup G] [NormedSpace G]
{f : E → F}
{l : F ≃L[] G} {v : E} : partialDeriv v (l ∘ f) = l ∘ partialDeriv v f := by
funext x
by_cases hyp : DifferentiableAt f x
· let lCLM : F →L[] G := l
suffices shyp : partialDeriv v (lCLM ∘ f) x = (lCLM ∘ partialDeriv v f) x from by tauto
apply partialDeriv_compContLinAt
exact hyp
· unfold partialDeriv
rw [fderiv_zero_of_not_differentiableAt]
simp
rw [fderiv_zero_of_not_differentiableAt]
simp
exact hyp
rw [ContinuousLinearEquiv.comp_differentiableAt_iff]
exact hyp
theorem partialDeriv_smul'₂
{E : Type*} [NormedAddCommGroup E] [NormedSpace E]
{F : Type*} [NormedAddCommGroup F] [NormedSpace F]
{f : E → F} {a : } {v : E} :
partialDeriv v (a • f) = a • partialDeriv v f := by
funext w
by_cases ha : a = 0
· unfold partialDeriv
have : a • f = fun y ↦ a • f y := by rfl
rw [this, ha]
simp
· -- Now a is not zero. We present scalar multiplication with a as a continuous linear equivalence.
let smulCLM : F ≃L[] F :=
{
toFun := fun x ↦ a • x
map_add' := fun x y => DistribSMul.smul_add a x y
map_smul' := fun m x => (smul_comm ((RingHom.id ) m) a x).symm
invFun := fun x ↦ a⁻¹ • x
left_inv := by
intro x
simp
rw [← smul_assoc, smul_eq_mul, mul_comm, mul_inv_cancel ha, one_smul]
right_inv := by
intro x
simp
rw [← smul_assoc, smul_eq_mul, mul_inv_cancel ha, one_smul]
continuous_toFun := continuous_const_smul a
continuous_invFun := continuous_const_smul a⁻¹
}
have : a • f = smulCLM ∘ f := by tauto
rw [this]
rw [partialDeriv_compCLE]
tauto
theorem CauchyRiemann₄
{F : Type*} [NormedAddCommGroup F] [NormedSpace F]
{f : → F} :
(Differentiable f) → partialDeriv Complex.I f = Complex.I • partialDeriv 1 f := by
intro h
unfold partialDeriv
conv =>
left
intro w
rw [DifferentiableAt.fderiv_restrictScalars (h w)]
simp
rw [← mul_one Complex.I]
rw [← smul_eq_mul]
conv =>
right
right
intro w
rw [DifferentiableAt.fderiv_restrictScalars (h w)]
funext w
simp
-/
theorem MeasureTheory.integral2_divergence₃
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
(f g : × → E)
(h₁f : ContDiff 1 f)
(h₁g : ContDiff 1 g)
(a₁ : )
(a₂ : )
(b₁ : )
(b₂ : ) :
∫ (x : ) in a₁..b₁, ∫ (y : ) in a₂..b₂, ((fderiv f) (x, y)) (1, 0) + ((fderiv g) (x, y)) (0, 1) = (((∫ (x : ) in a₁..b₁, g (x, b₂)) - ∫ (x : ) in a₁..b₁, g (x, a₂)) + ∫ (y : ) in a₂..b₂, f (b₁, y)) - ∫ (y : ) in a₂..b₂, f (a₁, y) := by
apply integral2_divergence_prod_of_hasFDerivWithinAt_off_countable f g (fderiv f) (fderiv g) a₁ a₂ b₁ b₂ ∅
exact Set.countable_empty
-- ContinuousOn f (Set.uIcc a₁ b₁ ×ˢ Set.uIcc a₂ b₂)
exact h₁f.continuous.continuousOn
--
exact h₁g.continuous.continuousOn
--
rw [Set.diff_empty]
intro x _
exact DifferentiableAt.hasFDerivAt ((h₁f.differentiable le_rfl) x)
--
rw [Set.diff_empty]
intro y _
exact DifferentiableAt.hasFDerivAt ((h₁g.differentiable le_rfl) y)
--
apply ContinuousOn.integrableOn_compact
apply IsCompact.prod
exact isCompact_uIcc
exact isCompact_uIcc
apply ContinuousOn.add
apply Continuous.continuousOn
exact Continuous.clm_apply (ContDiff.continuous_fderiv h₁f le_rfl) continuous_const
apply Continuous.continuousOn
exact Continuous.clm_apply (ContDiff.continuous_fderiv h₁g le_rfl) continuous_const
theorem integral_divergence₄
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
(f g : → E)
(h₁f : ContDiff 1 f)
(h₁g : ContDiff 1 g)
(a₁ : )
(a₂ : )
(b₁ : )
(b₂ : ) :
∫ (x : ) in a₁..b₁, ∫ (y : ) in a₂..b₂, ((fderiv f) ⟨x, y⟩ ) 1 + ((fderiv g) ⟨x, y⟩) Complex.I = (((∫ (x : ) in a₁..b₁, g ⟨x, b₂⟩) - ∫ (x : ) in a₁..b₁, g ⟨x, a₂⟩) + ∫ (y : ) in a₂..b₂, f ⟨b₁, y⟩) - ∫ (y : ) in a₂..b₂, f ⟨a₁, y⟩ := by
let fr : × → E := f ∘ Complex.equivRealProdCLM.symm
let gr : × → E := g ∘ Complex.equivRealProdCLM.symm
have sfr {x y : } : f { re := x, im := y } = fr (x, y) := by exact rfl
have sgr {x y : } : g { re := x, im := y } = gr (x, y) := by exact rfl
repeat (conv in f { re := _, im := _ } => rw [sfr])
repeat (conv in g { re := _, im := _ } => rw [sgr])
have sfr' {x y : } {z : } : (fderiv f { re := x, im := y }) z = fderiv fr (x, y) (Complex.equivRealProdCLM z) := by
rw [fderiv.comp]
rw [Complex.equivRealProdCLM.symm.fderiv]
tauto
apply Differentiable.differentiableAt
exact h₁f.differentiable le_rfl
exact Complex.equivRealProdCLM.symm.differentiableAt
conv in ⇑(fderiv f { re := _, im := _ }) _ => rw [sfr']
have sgr' {x y : } {z : } : (fderiv g { re := x, im := y }) z = fderiv gr (x, y) (Complex.equivRealProdCLM z) := by
rw [fderiv.comp]
rw [Complex.equivRealProdCLM.symm.fderiv]
tauto
apply Differentiable.differentiableAt
exact h₁g.differentiable le_rfl
exact Complex.equivRealProdCLM.symm.differentiableAt
conv in ⇑(fderiv g { re := _, im := _ }) _ => rw [sgr']
apply MeasureTheory.integral2_divergence₃ fr gr _ _ a₁ a₂ b₁ b₂
-- ContDiff 1 fr
exact (ContinuousLinearEquiv.contDiff_comp_iff (ContinuousLinearEquiv.symm Complex.equivRealProdCLM)).mpr h₁f
-- ContDiff 1 gr
exact (ContinuousLinearEquiv.contDiff_comp_iff (ContinuousLinearEquiv.symm Complex.equivRealProdCLM)).mpr h₁g
theorem integral_divergence₅
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
(F : → E)
(hF : Differentiable F)
(lowerLeft upperRight : ) :
(∫ (x : ) in lowerLeft.re..upperRight.re, F ⟨x, lowerLeft.im⟩) + Complex.I • ∫ (x : ) in lowerLeft.im..upperRight.im, F ⟨upperRight.re, x⟩ =
(∫ (x : ) in lowerLeft.re..upperRight.re, F ⟨x, upperRight.im⟩) + Complex.I • ∫ (x : ) in lowerLeft.im..upperRight.im, F ⟨lowerLeft.re, x⟩ := by
let h₁f : ContDiff 1 F := (hF.contDiff : ContDiff 1 F).restrict_scalars
let h₁g : ContDiff 1 (-Complex.I • F) := by
have : -Complex.I • F = fun x ↦ -Complex.I • F x := by rfl
rw [this]
apply ContDiff.comp
exact contDiff_const_smul _
exact h₁f
let A := integral_divergence₄ (-Complex.I • F) F h₁g h₁f lowerLeft.re upperRight.im upperRight.re lowerLeft.im
have {z : } : fderiv F z Complex.I = partialDeriv Complex.I F z := by rfl
conv at A in (fderiv F _) _ => rw [this]
have {z : } : fderiv (-Complex.I • F) z 1 = partialDeriv 1 (-Complex.I • F) z := by rfl
conv at A in (fderiv (-Complex.I • F) _) _ => rw [this]
conv at A =>
left
arg 1
intro x
arg 1
intro y
rw [CauchyRiemann₄ hF]
rw [partialDeriv_smul'₂]
simp
simp at A
have {t₁ t₂ t₃ t₄ : E} : 0 = (t₁ - t₂) + t₃ + t₄ → t₁ + t₃ = t₂ - t₄ := by
intro hyp
calc
t₁ + t₃ = t₁ + t₃ - 0 := by rw [sub_zero (t₁ + t₃)]
_ = t₁ + t₃ - (t₁ - t₂ + t₃ + t₄) := by rw [hyp]
_ = t₂ - t₄ := by abel
let B := this A
repeat
rw [intervalIntegral.integral_symm lowerLeft.im upperRight.im] at B
simp at B
exact B
noncomputable def primitive
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] :
→ ( → E) → ( → E) := by
intro z₀
intro f
exact fun z ↦ (∫ (x : ) in z₀.re..z.re, f ⟨x, z₀.im⟩) + Complex.I • ∫ (x : ) in z₀.im..z.im, f ⟨z.re, x⟩
theorem primitive_zeroAtBasepoint
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
(f : → E)
(z₀ : ) :
(primitive z₀ f) z₀ = 0 := by
unfold primitive
simp
theorem primitive_fderivAtBasepointZero
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
(f : → E)
(hf : Continuous f) :
HasDerivAt (primitive 0 f) (f 0) 0 := by
unfold primitive
simp
apply hasDerivAt_iff_isLittleO.2
simp
rw [Asymptotics.isLittleO_iff]
intro c hc
have {z : } {e : E} : z • e = (∫ (_ : ) in (0)..(z.re), e) + Complex.I • ∫ (_ : ) in (0)..(z.im), e:= by
simp
rw [smul_comm]
rw [← smul_assoc]
simp
have : z.re • e = (z.re : ) • e := by exact rfl
rw [this, ← add_smul]
simp
conv =>
left
intro x
left
arg 1
arg 2
rw [this]
have {A B C D :E} : (A + B) - (C + D) = (A - C) + (B - D) := by
abel
have t₀ {r : } : IntervalIntegrable (fun x => f { re := x, im := 0 }) MeasureTheory.volume 0 r := by
apply Continuous.intervalIntegrable
apply Continuous.comp
exact hf
have : (fun x => ({ re := x, im := 0 } : )) = Complex.ofRealLI := by rfl
rw [this]
continuity
have t₁ {r : } : IntervalIntegrable (fun _ => f 0) MeasureTheory.volume 0 r := by
apply Continuous.intervalIntegrable
apply Continuous.comp
exact hf
fun_prop
have t₂ {a b : } : IntervalIntegrable (fun x_1 => f { re := a, im := x_1 }) MeasureTheory.volume 0 b := by
apply Continuous.intervalIntegrable
apply Continuous.comp hf
have : (Complex.mk a) = (fun x => Complex.I • Complex.ofRealCLM x + { re := a, im := 0 }) := by
funext x
apply Complex.ext
rw [Complex.add_re]
simp
simp
rw [this]
apply Continuous.add
continuity
fun_prop
have t₃ {a : } : IntervalIntegrable (fun _ => f 0) MeasureTheory.volume 0 a := by
apply Continuous.intervalIntegrable
apply Continuous.comp
exact hf
fun_prop
conv =>
left
intro x
left
arg 1
rw [this]
rw [← smul_sub]
rw [← intervalIntegral.integral_sub t₀ t₁]
rw [← intervalIntegral.integral_sub t₂ t₃]
rw [Filter.eventually_iff_exists_mem]
let s := f⁻¹' Metric.ball (f 0) (c / (4 : ))
have h₁s : IsOpen s := IsOpen.preimage hf Metric.isOpen_ball
have h₂s : 0 ∈ s := by
apply Set.mem_preimage.mpr
apply Metric.mem_ball_self
linarith
obtain ⟨ε, h₁ε, h₂ε⟩ := Metric.isOpen_iff.1 h₁s 0 h₂s
have h₃ε : ∀ y ∈ Metric.ball 0 ε, ‖(f y) - (f 0)‖ < (c / (4 : )) := by
intro y hy
apply mem_ball_iff_norm.mp (h₂ε hy)
use Metric.ball 0 (ε / (4 : ))
constructor
· apply Metric.ball_mem_nhds 0
linarith
· intro y hy
have h₁y : |y.re| < ε / 4 := by
calc |y.re|
_ ≤ Complex.abs y := by apply Complex.abs_re_le_abs
_ < ε / 4 := by
let A := mem_ball_iff_norm.1 hy
simp at A
linarith
have h₂y : |y.im| < ε / 4 := by
calc |y.im|
_ ≤ Complex.abs y := by apply Complex.abs_im_le_abs
_ < ε / 4 := by
let A := mem_ball_iff_norm.1 hy
simp at A
linarith
have intervalComputation {x' y' : } (h : x' ∈ Ι 0 y') : |x'| ≤ |y'| := by
let A := h.1
let B := h.2
rcases le_total 0 y' with hy | hy
· simp [hy] at A
simp [hy] at B
rw [abs_of_nonneg hy]
rw [abs_of_nonneg (le_of_lt A)]
exact B
· simp [hy] at A
simp [hy] at B
rw [abs_of_nonpos hy]
rw [abs_of_nonpos]
linarith [h.1]
exact B
have t₁ : ‖(∫ (x : ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ ≤ (c / (4 : )) * |y.re - 0| := by
apply intervalIntegral.norm_integral_le_of_norm_le_const
intro x hx
have h₁x : |x| < ε / 4 := by
calc |x|
_ ≤ |y.re| := intervalComputation hx
_ < ε / 4 := h₁y
apply le_of_lt
apply h₃ε { re := x, im := 0 }
rw [mem_ball_iff_norm]
simp
have : { re := x, im := 0 } = (x : ) := by rfl
rw [this]
rw [Complex.abs_ofReal]
linarith
have t₂ : ‖∫ (x : ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ ≤ (c / (4 : )) * |y.im - 0| := by
apply intervalIntegral.norm_integral_le_of_norm_le_const
intro x hx
have h₁x : |x| < ε / 4 := by
calc |x|
_ ≤ |y.im| := intervalComputation hx
_ < ε / 4 := h₂y
apply le_of_lt
apply h₃ε { re := y.re, im := x }
simp
calc Complex.abs { re := y.re, im := x }
_ ≤ |y.re| + |x| := by
apply Complex.abs_le_abs_re_add_abs_im { re := y.re, im := x }
_ < ε := by
linarith
calc ‖(∫ (x : ) in (0)..(y.re), f { re := x, im := 0 } - f 0) + Complex.I • ∫ (x : ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖
_ ≤ ‖(∫ (x : ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ + ‖Complex.I • ∫ (x : ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ := by
apply norm_add_le
_ ≤ ‖(∫ (x : ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ + ‖∫ (x : ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ := by
simp
rw [norm_smul]
simp
_ ≤ (c / (4 : )) * |y.re - 0| + (c / (4 : )) * |y.im - 0| := by
apply add_le_add
exact t₁
exact t₂
_ ≤ (c / (4 : )) * (|y.re| + |y.im|) := by
simp
rw [mul_add]
_ ≤ (c / (4 : )) * (4 * ‖y‖) := by
have : |y.re| + |y.im| ≤ 4 * ‖y‖ := by
calc |y.re| + |y.im|
_ ≤ ‖y‖ + ‖y‖ := by
apply add_le_add
apply Complex.abs_re_le_abs
apply Complex.abs_im_le_abs
_ ≤ 4 * ‖y‖ := by
rw [← two_mul]
apply mul_le_mul
linarith
rfl
exact norm_nonneg y
linarith
apply mul_le_mul
rfl
exact this
apply add_nonneg
apply abs_nonneg
apply abs_nonneg
linarith
_ ≤ c * ‖y‖ := by
linarith
theorem primitive_translation
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
(f : → E)
(z₀ t : ) :
primitive z₀ (f ∘ fun z ↦ (z - t)) = ((primitive (z₀ - t) f) ∘ fun z ↦ (z - t)) := by
funext z
unfold primitive
simp
let g : → E := fun x ↦ f ( {re := x, im := z₀.im - t.im} )
have {x : } : f ({ re := x, im := z₀.im } - t) = g (1*x - t.re) := by
congr 1
apply Complex.ext <;> simp
conv =>
left
left
arg 1
intro x
rw [this]
rw [intervalIntegral.integral_comp_mul_sub g one_ne_zero (t.re)]
simp
congr 1
let g : → E := fun x ↦ f ( {re := z.re - t.re, im := x} )
have {x : } : f ({ re := z.re, im := x} - t) = g (1*x - t.im) := by
congr 1
apply Complex.ext <;> simp
conv =>
left
arg 1
intro x
rw [this]
rw [intervalIntegral.integral_comp_mul_sub g one_ne_zero (t.im)]
simp
theorem primitive_hasDerivAtBasepoint
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
{f : → E}
(hf : Continuous f)
(z₀ : ) :
HasDerivAt (primitive z₀ f) (f z₀) z₀ := by
let g := f ∘ fun z ↦ z + z₀
have : Continuous g := by continuity
let A := primitive_fderivAtBasepointZero g this
simp at A
let B := primitive_translation g z₀ z₀
simp at B
have : (g ∘ fun z ↦ (z - z₀)) = f := by
funext z
dsimp [g]
simp
rw [this] at B
rw [B]
have : f z₀ = (1 : ) • (f z₀) := by
exact (MulAction.one_smul (f z₀)).symm
conv =>
arg 2
rw [this]
apply HasDerivAt.scomp
simp
have : g 0 = f z₀ := by simp [g]
rw [← this]
exact A
apply HasDerivAt.sub_const
have : (fun (x : ) ↦ x) = id := by
funext x
simp
rw [this]
exact hasDerivAt_id z₀
lemma integrability₁
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
(f : → E)
(hf : Differentiable f)
(a₁ a₂ b : ) :
IntervalIntegrable (fun x => f { re := x, im := b }) MeasureTheory.volume a₁ a₂ := by
apply Continuous.intervalIntegrable
apply Continuous.comp
exact Differentiable.continuous hf
have : ((fun x => { re := x, im := b }) : ) = (fun x => Complex.ofRealCLM x + { re := 0, im := b }) := by
funext x
apply Complex.ext
rw [Complex.add_re]
simp
rw [Complex.add_im]
simp
rw [this]
continuity
lemma integrability₂
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
(f : → E)
(hf : Differentiable f)
(a₁ a₂ b : ) :
IntervalIntegrable (fun x => f { re := b, im := x }) MeasureTheory.volume a₁ a₂ := by
apply Continuous.intervalIntegrable
apply Continuous.comp
exact Differentiable.continuous hf
have : (Complex.mk b) = (fun x => Complex.I • Complex.ofRealCLM x + { re := b, im := 0 }) := by
funext x
apply Complex.ext
rw [Complex.add_re]
simp
simp
rw [this]
apply Continuous.add
continuity
fun_prop
theorem primitive_additivity
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
(f : → E)
(hf : Differentiable f)
(z₀ z₁ : ) :
primitive z₀ f = fun z ↦ (primitive z₁ f) z + (primitive z₀ f z₁) := by
funext z
unfold primitive
have : (∫ (x : ) in z₀.re..z.re, f { re := x, im := z₀.im }) = (∫ (x : ) in z₀.re..z₁.re, f { re := x, im := z₀.im }) + (∫ (x : ) in z₁.re..z.re, f { re := x, im := z₀.im }) := by
rw [intervalIntegral.integral_add_adjacent_intervals]
apply integrability₁ f hf
apply integrability₁ f hf
rw [this]
have : (∫ (x : ) in z₀.im..z.im, f { re := z.re, im := x }) = (∫ (x : ) in z₀.im..z₁.im, f { re := z.re, im := x }) + (∫ (x : ) in z₁.im..z.im, f { re := z.re, im := x }) := by
rw [intervalIntegral.integral_add_adjacent_intervals]
apply integrability₂ f hf
apply integrability₂ f hf
rw [this]
simp
let A := integral_divergence₅ f hf ⟨z₁.re, z₀.im⟩ ⟨z.re, z₁.im⟩
simp at A
have {a b c d : E} : (b + a) + (c + d) = (a + c) + (b + d) := by
abel
rw [this]
rw [A]
abel
theorem primitive_hasDerivAt
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
{f : → E}
(hf : Differentiable f)
(z₀ z : ) :
HasDerivAt (primitive z₀ f) (f z) z := by
rw [primitive_additivity f hf z₀ z]
rw [← add_zero (f z)]
apply HasDerivAt.add
apply primitive_hasDerivAtBasepoint
exact hf.continuous
apply hasDerivAt_const
theorem primitive_differentiable
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
{f : → E}
(hf : Differentiable f)
(z₀ : ) :
Differentiable (primitive z₀ f) := by
intro z
exact (primitive_hasDerivAt hf z₀ z).differentiableAt
theorem primitive_hasFderivAt
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
{f : → E}
(hf : Differentiable f)
(z₀ : ) :
∀ z, HasFDerivAt (primitive z₀ f) ((ContinuousLinearMap.lsmul ).flip (f z)) z := by
intro z
rw [hasFDerivAt_iff_hasDerivAt]
simp
exact primitive_hasDerivAt hf z₀ z
theorem primitive_hasFderivAt'
{f : }
(hf : Differentiable f)
(z₀ : ) :
∀ z, HasFDerivAt (primitive z₀ f) (ContinuousLinearMap.lsmul (f z)) z := by
intro z
rw [hasFDerivAt_iff_hasDerivAt]
simp
exact primitive_hasDerivAt hf z₀ z
theorem primitive_fderiv
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
{f : → E}
(hf : Differentiable f)
(z₀ : ) :
∀ z, (fderiv (primitive z₀ f) z) = (ContinuousLinearMap.lsmul ).flip (f z) := by
intro z
apply HasFDerivAt.fderiv
exact primitive_hasFderivAt hf z₀ z
theorem primitive_fderiv'
{f : }
(hf : Differentiable f)
(z₀ : ) :
∀ z, (fderiv (primitive z₀ f) z) = ContinuousLinearMap.lsmul (f z) := by
intro z
apply HasFDerivAt.fderiv
exact primitive_hasFderivAt' hf z₀ z

View File

@ -1,285 +0,0 @@
import Mathlib.Analysis.InnerProductSpace.Basic
import Mathlib.Analysis.InnerProductSpace.Dual
import Mathlib.Analysis.InnerProductSpace.PiL2
--import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Analysis.Calculus.ContDiff.Bounds
import Mathlib.Analysis.Calculus.FDeriv.Symmetric
--import Mathlib.LinearAlgebra.Basis
--import Mathlib.LinearAlgebra.Contraction
open BigOperators
open Finset
variable {E : Type*} [NormedAddCommGroup E] [InnerProductSpace E] [FiniteDimensional E]
noncomputable def realInnerAsElementOfDualTensorprod
{E : Type*} [NormedAddCommGroup E] [InnerProductSpace E]
: TensorProduct E E →ₗ[] := TensorProduct.lift bilinFormOfRealInner
instance
{E : Type*} [NormedAddCommGroup E] [InnerProductSpace E] [CompleteSpace E] [FiniteDimensional E]
: NormedAddCommGroup (TensorProduct E E) where
norm := by
sorry
dist_self := by
sorry
sorry
/-
instance
{E : Type*} [NormedAddCommGroup E] [InnerProductSpace E] [CompleteSpace E] [FiniteDimensional E]
: InnerProductSpace (TensorProduct E E) where
smul := _
one_smul := _
mul_smul := _
smul_zero := _
smul_add := _
add_smul := _
zero_smul := _
norm_smul_le := _
inner := _
norm_sq_eq_inner := _
conj_symm := _
add_left := _
smul_left := _
-/
noncomputable def dual'
{E : Type*} [NormedAddCommGroup E] [InnerProductSpace E] [CompleteSpace E] [FiniteDimensional E]
: (TensorProduct E E →ₗ[] ) ≃ₗ[] TensorProduct E E := by
let d := InnerProductSpace.toDual E
let e := d.toLinearEquiv
let a := TensorProduct.congr e e
let b := homTensorHomEquiv E E
sorry
variable {E : Type*} [NormedAddCommGroup E] [InnerProductSpace E] [FiniteDimensional E]
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace F]
theorem InvariantTensor
[Fintype ι]
(v : Basis ι E)
(c : ι)
(L : ContinuousMultilinearMap (fun (_ : Fin 2) ↦ E) F) :
L (fun _ => ∑ j : ι, c j • v j) = ∑ x : Fin 2 → ι, (c (x 0) * c (x 1)) • L ((fun i => v (x i))) := by
rw [L.map_sum]
simp_rw [L.map_smul_univ]
sorry
theorem BilinearCalc
[Fintype ι]
(v : Basis ι E)
(c : ι)
(L : ContinuousMultilinearMap (fun (_ : Fin 2) ↦ E) F) :
L (fun _ => ∑ j : ι, c j • v j) = ∑ x : Fin 2 → ι, (c (x 0) * c (x 1)) • L ((fun i => v (x i))) := by
rw [L.map_sum]
simp_rw [L.map_smul_univ]
sorry
/-
lemma c2
[Fintype ι]
(b : Basis ι E)
(hb : Orthonormal b)
(x y : E) :
⟪x, y⟫_ = ∑ i : ι, ⟪x, b i⟫_ * ⟪y, b i⟫_ := by
rw [vectorPresentation b hb x]
rw [vectorPresentation b hb y]
rw [Orthonormal.inner_sum hb]
simp
conv =>
right
arg 2
intro i'
rw [Orthonormal.inner_left_fintype hb]
rw [Orthonormal.inner_left_fintype hb]
-/
lemma fin_sum
[Fintype ι]
(f : ιι → F) :
∑ r : Fin 2 → ι, f (r 0) (r 1) = ∑ r₀ : ι, (∑ r₁ : ι, f r₀ r₁) := by
rw [← Fintype.sum_prod_type']
apply Fintype.sum_equiv (finTwoArrowEquiv ι)
intro x
dsimp
theorem LaplaceIndep
[Fintype ι] [DecidableEq ι]
(v₁ : OrthonormalBasis ι E)
(v₂ : OrthonormalBasis ι E)
(L : ContinuousMultilinearMap (fun (_ : Fin 2) ↦ E) F) :
∑ i, L (fun _ ↦ v₁ i) = ∑ i, L (fun _ => v₂ i) := by
have vector_vs_function
{y : Fin 2 → ι}
{v : ι → E}
: (fun i => v (y i)) = ![v (y 0), v (y 1)] := by
funext i
by_cases h : i = 0
· rw [h]
simp
· rw [Fin.eq_one_of_neq_zero i h]
simp
conv =>
right
arg 2
intro i
rw [v₁.sum_repr' (v₂ i)]
rw [BilinearCalc]
rw [Finset.sum_comm]
conv =>
right
arg 2
intro y
rw [← Finset.sum_smul]
rw [← c2 v₂ hv₂ (v₁ (y 0)) (v₁ (y 1))]
rw [vector_vs_function]
simp
rw [fin_sum (fun i₀ ↦ (fun i₁ ↦ ⟪v₁ i₀, v₁ i₁⟫_ • L ![v₁ i₀, v₁ i₁]))]
have xx {r₀ : ι} : ∀ r₁ : ι, r₁ ≠ r₀ → ⟪v₁ r₀, v₁ r₁⟫_ • L ![v₁ r₀, v₁ r₁] = 0 := by
intro r₁ hr₁
rw [orthonormal_iff_ite.1 hv₁]
simp
tauto
conv =>
right
arg 2
intro r₀
rw [Fintype.sum_eq_single r₀ xx]
rw [orthonormal_iff_ite.1 hv₁]
apply sum_congr
rfl
intro x _
rw [vector_vs_function]
simp
noncomputable def Laplace_wrt_basis
[Fintype ι]
(v : Basis ι E)
(_ : Orthonormal v)
(f : E → F) :
E → F :=
fun z ↦ ∑ i, iteratedFDeriv 2 f z ![v i, v i]
theorem LaplaceIndep'
[Fintype ι] [DecidableEq ι]
(v₁ : OrthonormalBasis ι E)
(v₂ : OrthonormalBasis ι E)
(f : E → F)
: (Laplace_wrt_basis v₁ hv₁ f) = (Laplace_wrt_basis v₂ hv₂ f) := by
funext z
unfold Laplace_wrt_basis
let XX := LaplaceIndep v₁ hv₁ v₂ hv₂ (iteratedFDeriv 2 f z)
have vector_vs_function
{v : E}
: ![v, v] = (fun _ => v) := by
funext i
by_cases h : i = 0
· rw [h]
simp
· rw [Fin.eq_one_of_neq_zero i h]
simp
conv =>
left
arg 2
intro i
rw [vector_vs_function]
conv =>
right
arg 2
intro i
rw [vector_vs_function]
assumption
theorem LaplaceIndep''
[Fintype ι₁] [DecidableEq ι₁]
(v₁ : Basis ι₁ E)
(hv₁ : Orthonormal v₁)
[Fintype ι₂] [DecidableEq ι₂]
(v₂ : Basis ι₂ E)
(hv₂ : Orthonormal v₂)
(f : E → F)
: (Laplace_wrt_basis v₁ hv₁ f) = (Laplace_wrt_basis v₂ hv₂ f) := by
have b : ι₁ ≃ ι₂ := by
apply Fintype.equivOfCardEq
rw [← FiniteDimensional.finrank_eq_card_basis v₁]
rw [← FiniteDimensional.finrank_eq_card_basis v₂]
let v'₁ := Basis.reindex v₁ b
have hv'₁ : Orthonormal v'₁ := by
let A := Basis.reindex_apply v₁ b
have : ⇑v'₁ = v₁ ∘ b.symm := by
funext i
exact A i
rw [this]
let B := Orthonormal.comp hv₁ b.symm
apply B
exact Equiv.injective b.symm
rw [← LaplaceIndep' v'₁ hv'₁ v₂ hv₂ f]
unfold Laplace_wrt_basis
simp
funext z
rw [← Equiv.sum_comp b.symm]
apply Fintype.sum_congr
intro i₂
congr
rw [Basis.reindex_apply v₁ b i₂]
noncomputable def Laplace
(f : E → F)
: E → F := by
exact Laplace_wrt_basis (stdOrthonormalBasis E).toBasis (stdOrthonormalBasis E).orthonormal f
theorem LaplaceIndep'''
[Fintype ι] [DecidableEq ι]
(v : Basis ι E)
(hv : Orthonormal v)
(f : E → F)
: (Laplace f) = (Laplace_wrt_basis v hv f) := by
unfold Laplace
apply LaplaceIndep'' (stdOrthonormalBasis E).toBasis (stdOrthonormalBasis E).orthonormal v hv f
theorem Complex.Laplace'
(f : → F)
: (Laplace f) = fun z ↦ (iteratedFDeriv 2 f z) ![1, 1] + (iteratedFDeriv 2 f z) ![Complex.I, Complex.I] := by
rw [LaplaceIndep''' Complex.orthonormalBasisOneI.toBasis Complex.orthonormalBasisOneI.orthonormal f]
unfold Laplace_wrt_basis
simp

View File

@ -1,528 +0,0 @@
import Mathlib.Analysis.Complex.CauchyIntegral
import Mathlib.Analysis.Analytic.IsolatedZeros
import Nevanlinna.analyticOnNhd_zeroSet
import Nevanlinna.harmonicAt_examples
import Nevanlinna.harmonicAt_meanValue
import Nevanlinna.specialFunctions_CircleIntegral_affine
import Nevanlinna.stronglyMeromorphicOn
import Nevanlinna.stronglyMeromorphicOn_eliminate
import Nevanlinna.meromorphicOn_divisor
open Real
theorem jensen_case_R_eq_one'
(f : )
(h₁f : StronglyMeromorphicOn f (Metric.closedBall 0 1))
(h₂f : f 0 ≠ 0) :
log ‖f 0‖ = -∑ᶠ s, (h₁f.meromorphicOn.divisor s) * log (‖s‖⁻¹) + (2 * π)⁻¹ * ∫ (x : ) in (0)..(2 * π), log ‖f (circleMap 0 1 x)‖ := by
have h₁U : IsConnected (Metric.closedBall (0 : ) 1) := by
constructor
· apply Metric.nonempty_closedBall.mpr (by simp)
· exact (convex_closedBall (0 : ) 1).isPreconnected
have h₂U : IsCompact (Metric.closedBall (0 : ) 1) :=
isCompact_closedBall 0 1
have h'₂f : ∃ u : (Metric.closedBall (0 : ) 1), f u ≠ 0 := by
use ⟨0, Metric.mem_closedBall_self (by simp)⟩
have h₃f : Set.Finite (Function.support h₁f.meromorphicOn.divisor) := by
exact Divisor.finiteSupport h₂U (StronglyMeromorphicOn.meromorphicOn h₁f).divisor
have h₄f: Function.support (fun s ↦ (h₁f.meromorphicOn.divisor s) * log (‖s‖⁻¹)) ⊆ h₃f.toFinset := by
intro x
contrapose
simp
intro hx
rw [hx]
simp
rw [finsum_eq_sum_of_support_subset _ h₄f]
obtain ⟨F, h₁F, h₂F, h₃F, h₄F⟩ := MeromorphicOn.decompose₃' h₂U h₁U h₁f h'₂f
have h₁F : Function.mulSupport (fun u ↦ fun z => (z - u) ^ (h₁f.meromorphicOn.divisor u)) ⊆ h₃f.toFinset := by
intro u
contrapose
simp
intro hu
rw [hu]
simp
exact rfl
rw [finprod_eq_prod_of_mulSupport_subset _ h₁F] at h₄F
let G := fun z ↦ log ‖F z‖ + ∑ᶠ s, (h₁f.meromorphicOn.divisor s) * log ‖z - s‖
have h₁G {z : } : Function.support (fun s ↦ (h₁f.meromorphicOn.divisor s) * log ‖z - s‖) ⊆ h₃f.toFinset := by
intro s
contrapose
simp
intro hs
rw [hs]
simp
have decompose_f : ∀ z ∈ Metric.closedBall (0 : ) 1, f z ≠ 0 → log ‖f z‖ = G z := by
intro z h₁z h₂z
rw [h₄F]
simp only [Pi.mul_apply, norm_mul]
simp only [Finset.prod_apply, norm_prod, norm_zpow]
rw [Real.log_mul]
rw [Real.log_prod]
simp_rw [Real.log_zpow]
dsimp only [G]
rw [finsum_eq_sum_of_support_subset _ h₁G]
--
intro x hx
have : z ≠ x := by
by_contra hCon
rw [← hCon] at hx
simp at hx
rw [← StronglyMeromorphicAt.order_eq_zero_iff] at h₂z
unfold MeromorphicOn.divisor at hx
simp [h₁z] at hx
tauto
apply zpow_ne_zero
simpa
-- Complex.abs (F z) ≠ 0
simp
exact h₃F ⟨z, h₁z⟩
--
rw [Finset.prod_ne_zero_iff]
intro x hx
have : z ≠ x := by
by_contra hCon
rw [← hCon] at hx
simp at hx
rw [← StronglyMeromorphicAt.order_eq_zero_iff] at h₂z
unfold MeromorphicOn.divisor at hx
simp [h₁z] at hx
tauto
apply zpow_ne_zero
simpa
have int_logAbs_f_eq_int_G : ∫ (x : ) in (0)..2 * π, log ‖f (circleMap 0 1 x)‖ = ∫ (x : ) in (0)..2 * π, G (circleMap 0 1 x) := by
rw [intervalIntegral.integral_congr_ae]
rw [MeasureTheory.ae_iff]
apply Set.Countable.measure_zero
simp
have t₀ : {a | a ∈ Ι 0 (2 * π) ∧ ¬log ‖f (circleMap 0 1 a)‖ = G (circleMap 0 1 a)}
⊆ (circleMap 0 1)⁻¹' (h₃f.toFinset) := by
intro a ha
simp at ha
simp
by_contra C
have t₀ : (circleMap 0 1 a) ∈ Metric.closedBall 0 1 :=
circleMap_mem_closedBall 0 (zero_le_one' ) a
have t₁ : f (circleMap 0 1 a) ≠ 0 := by
let A := h₁f (circleMap 0 1 a) t₀
rw [← A.order_eq_zero_iff]
unfold MeromorphicOn.divisor at C
simp [t₀] at C
rcases C with C₁|C₂
· assumption
· let B := h₁f.meromorphicOn.order_ne_top' h₁U
let C := fun q ↦ B q ⟨(circleMap 0 1 a), t₀⟩
rw [C₂] at C
have : ∃ u : (Metric.closedBall (0 : ) 1), (h₁f u u.2).meromorphicAt.order ≠ := by
use ⟨(0 : ), (by simp)⟩
let H := h₁f 0 (by simp)
let K := H.order_eq_zero_iff.2 h₂f
rw [K]
simp
let D := C this
tauto
exact ha.2 (decompose_f (circleMap 0 1 a) t₀ t₁)
apply Set.Countable.mono t₀
apply Set.Countable.preimage_circleMap
apply Set.Finite.countable
exact Finset.finite_toSet h₃f.toFinset
--
simp
have decompose_int_G : ∫ (x : ) in (0)..2 * π, G (circleMap 0 1 x)
= (∫ (x : ) in (0)..2 * π, log (Complex.abs (F (circleMap 0 1 x))))
+ ∑ᶠ x, (h₁f.meromorphicOn.divisor x) * ∫ (x_1 : ) in (0)..2 * π, log (Complex.abs (circleMap 0 1 x_1 - ↑x)) := by
dsimp [G]
rw [intervalIntegral.integral_add]
congr
have t₀ {x : } : Function.support (fun s ↦ (h₁f.meromorphicOn.divisor s) * log (Complex.abs (circleMap 0 1 x - s))) ⊆ h₃f.toFinset := by
intro s hs
simp at hs
simp [hs.1]
conv =>
left
arg 1
intro x
rw [finsum_eq_sum_of_support_subset _ t₀]
rw [intervalIntegral.integral_finset_sum]
let G' := fun x ↦ ((h₁f.meromorphicOn.divisor x) : ) * ∫ (x_1 : ) in (0)..2 * π, log (Complex.abs (circleMap 0 1 x_1 - x))
have t₁ : (Function.support fun x ↦ (h₁f.meromorphicOn.divisor x) * ∫ (x_1 : ) in (0)..2 * π, log (Complex.abs (circleMap 0 1 x_1 - x))) ⊆ h₃f.toFinset := by
simp
intro s
contrapose!
simp
tauto
conv =>
right
rw [finsum_eq_sum_of_support_subset _ t₁]
simp
-- ∀ i ∈ (finiteZeros h₁U h₂U h'₁f h'₂f).toFinset,
-- IntervalIntegrable (fun x => (h'₁f.order i).toNat *
-- log (Complex.abs (circleMap 0 1 x - ↑i))) MeasureTheory.volume 0 (2 * π)
intro i _
apply IntervalIntegrable.const_mul
--simp at this
by_cases h₂i : ‖i‖ = 1
-- case pos
exact int'₂ h₂i
-- case neg
apply Continuous.intervalIntegrable
apply continuous_iff_continuousAt.2
intro x
have : (fun x => log (Complex.abs (circleMap 0 1 x - ↑i))) = log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 1 x - ↑i) :=
rfl
rw [this]
apply ContinuousAt.comp
apply Real.continuousAt_log
simp
by_contra ha'
conv at h₂i =>
arg 1
rw [← ha']
rw [Complex.norm_eq_abs]
rw [abs_circleMap_zero 1 x]
simp
tauto
apply ContinuousAt.comp
apply Complex.continuous_abs.continuousAt
fun_prop
-- IntervalIntegrable (fun x => log (Complex.abs (F (circleMap 0 1 x)))) MeasureTheory.volume 0 (2 * π)
apply Continuous.intervalIntegrable
apply continuous_iff_continuousAt.2
intro x
have : (fun x => log (Complex.abs (F (circleMap 0 1 x)))) = log ∘ Complex.abs ∘ F ∘ (fun x ↦ circleMap 0 1 x) :=
rfl
rw [this]
apply ContinuousAt.comp
apply Real.continuousAt_log
simp
exact h₃F ⟨(circleMap 0 1 x), (by simp)⟩
-- ContinuousAt (⇑Complex.abs ∘ F ∘ fun x => circleMap 0 1 x) x
apply ContinuousAt.comp
apply Complex.continuous_abs.continuousAt
apply ContinuousAt.comp
apply DifferentiableAt.continuousAt (𝕜 := )
apply AnalyticAt.differentiableAt
exact h₂F (circleMap 0 1 x) (by simp)
-- ContinuousAt (fun x => circleMap 0 1 x) x
apply Continuous.continuousAt
apply continuous_circleMap
-- IntervalIntegrable (fun x => ∑ᶠ (s : ), ↑(↑⋯.divisor s) * log (Complex.abs (circleMap 0 1 x - s))) MeasureTheory.volume 0 (2 * π)
--simp? at h₁G
have h₁G' {z : } : (Function.support fun s => (h₁f.meromorphicOn.divisor s) * log (Complex.abs (z - s))) ⊆ ↑h₃f.toFinset := by
exact h₁G
conv =>
arg 1
intro z
rw [finsum_eq_sum_of_support_subset _ h₁G']
conv =>
arg 1
rw [← Finset.sum_fn]
apply IntervalIntegrable.sum
intro i _
apply IntervalIntegrable.const_mul
--have : i.1 ∈ Metric.closedBall (0 : ) 1 := i.2
--simp at this
by_cases h₂i : ‖i‖ = 1
-- case pos
exact int'₂ h₂i
-- case neg
--have : i.1 ∈ Metric.ball (0 : ) 1 := by sorry
apply Continuous.intervalIntegrable
apply continuous_iff_continuousAt.2
intro x
have : (fun x => log (Complex.abs (circleMap 0 1 x - ↑i))) = log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 1 x - ↑i) :=
rfl
rw [this]
apply ContinuousAt.comp
apply Real.continuousAt_log
simp
by_contra ha'
conv at h₂i =>
arg 1
rw [← ha']
rw [Complex.norm_eq_abs]
rw [abs_circleMap_zero 1 x]
simp
tauto
apply ContinuousAt.comp
apply Complex.continuous_abs.continuousAt
fun_prop
have t₁ : (∫ (x : ) in (0)..2 * Real.pi, log ‖F (circleMap 0 1 x)‖) = 2 * Real.pi * log ‖F 0‖ := by
let logAbsF := fun w ↦ Real.log ‖F w‖
have t₀ : ∀ z ∈ Metric.closedBall 0 1, HarmonicAt logAbsF z := by
intro z hz
apply logabs_of_holomorphicAt_is_harmonic
exact AnalyticAt.holomorphicAt (h₂F z hz)
exact h₃F ⟨z, hz⟩
apply harmonic_meanValue₁ 1 Real.zero_lt_one t₀
simp_rw [← Complex.norm_eq_abs] at decompose_int_G
rw [t₁] at decompose_int_G
have h₁G' : (Function.support fun s => (h₁f.meromorphicOn.divisor s) * ∫ (x_1 : ) in (0)..(2 * π), log ‖circleMap 0 1 x_1 - s‖) ⊆ ↑h₃f.toFinset := by
intro s hs
simp at hs
simp [hs.1]
rw [finsum_eq_sum_of_support_subset _ h₁G'] at decompose_int_G
have : ∑ s ∈ h₃f.toFinset, (h₁f.meromorphicOn.divisor s) * ∫ (x_1 : ) in (0)..(2 * π), log ‖circleMap 0 1 x_1 - s‖ = 0 := by
apply Finset.sum_eq_zero
intro x hx
rw [int₃ _]
simp
simp at hx
let ZZ := h₁f.meromorphicOn.divisor.supportInU
simp at ZZ
let UU := ZZ x hx
simpa
rw [this] at decompose_int_G
simp at decompose_int_G
rw [int_logAbs_f_eq_int_G]
rw [decompose_int_G]
let X := h₄F
nth_rw 1 [h₄F]
simp
have {l : } : π⁻¹ * 2⁻¹ * (2 * π * l) = l := by
calc π⁻¹ * 2⁻¹ * (2 * π * l)
_ = π⁻¹ * (2⁻¹ * 2) * π * l := by ring
_ = π⁻¹ * π * l := by ring
_ = (π⁻¹ * π) * l := by ring
_ = 1 * l := by
rw [inv_mul_cancel₀]
exact pi_ne_zero
_ = l := by simp
rw [this]
rw [log_mul]
rw [log_prod]
simp
rw [add_comm]
--
intro x hx
simp at hx
rw [zpow_ne_zero_iff]
by_contra hCon
simp at hCon
rw [← (h₁f 0 (by simp)).order_eq_zero_iff] at h₂f
rw [hCon] at hx
unfold MeromorphicOn.divisor at hx
simp at hx
rw [h₂f] at hx
tauto
assumption
--
simp
by_contra hCon
nth_rw 1 [h₄F] at h₂f
simp at h₂f
tauto
--
rw [Finset.prod_ne_zero_iff]
intro x hx
simp at hx
rw [zpow_ne_zero_iff]
by_contra hCon
simp at hCon
rw [← (h₁f 0 (by simp)).order_eq_zero_iff] at h₂f
rw [hCon] at hx
unfold MeromorphicOn.divisor at hx
simp at hx
rw [h₂f] at hx
tauto
assumption
lemma const_mul_circleMap_zero'
{R θ : } :
circleMap 0 R θ = R * circleMap 0 1 θ := by
rw [circleMap_zero, circleMap_zero]
simp
theorem jensen'
{R : }
(hR : 0 < R)
(f : )
(h₁f : StronglyMeromorphicOn f (Metric.closedBall 0 R))
(h₂f : f 0 ≠ 0) :
log ‖f 0‖ = -∑ᶠ s, (h₁f.meromorphicOn.divisor s) * log (R * ‖s‖⁻¹) + (2 * π)⁻¹ * ∫ (x : ) in (0)..(2 * π), log ‖f (circleMap 0 R x)‖ := by
let : ≃L[] :=
{
toFun := fun x ↦ R * x
map_add' := fun x y => DistribSMul.smul_add R x y
map_smul' := fun m x => mul_smul_comm m (↑R) x
invFun := fun x ↦ R⁻¹ * x
left_inv := by
intro x
simp
rw [← mul_assoc, mul_comm, inv_mul_cancel₀, mul_one]
simp
exact ne_of_gt hR
right_inv := by
intro x
simp
rw [← mul_assoc, mul_inv_cancel₀, one_mul]
simp
exact ne_of_gt hR
continuous_toFun := continuous_const_smul R
continuous_invFun := continuous_const_smul R⁻¹
}
let F := f ∘
have h₁F : StronglyMeromorphicOn F (Metric.closedBall 0 1) := by
sorry
/-
apply AnalyticOnNhd.comp (t := Metric.closedBall 0 R)
exact h₁f
intro x _
apply .toContinuousLinearMap.analyticAt x
intro x hx
have : x = R * x := by rfl
rw [this]
simp
simp at hx
rw [abs_of_pos hR]
calc R * Complex.abs x
_ ≤ R * 1 := by exact (mul_le_mul_iff_of_pos_left hR).mpr hx
_ = R := by simp
-/
have h₂F : F 0 ≠ 0 := by
dsimp [F]
have : 0 = R * 0 := by rfl
rw [this]
simpa
let A := jensen_case_R_eq_one' F h₁F h₂F
dsimp [F] at A
have {x : } : x = R * x := by rfl
repeat
simp_rw [this] at A
simp at A
simp
rw [A]
simp_rw [← const_mul_circleMap_zero']
simp
let e : (Metric.closedBall (0 : ) 1) → (Metric.closedBall (0 : ) R) := by
intro ⟨x, hx⟩
have hy : R • x ∈ Metric.closedBall (0 : ) R := by
simp
simp at hx
have : R = |R| := by exact Eq.symm (abs_of_pos hR)
rw [← this]
norm_num
calc R * Complex.abs x
_ ≤ R * 1 := by exact (mul_le_mul_iff_of_pos_left hR).mpr hx
_ = R := by simp
exact ⟨R • x, hy⟩
let e' : (Metric.closedBall (0 : ) R) → (Metric.closedBall (0 : ) 1) := by
intro ⟨x, hx⟩
have hy : R⁻¹ • x ∈ Metric.closedBall (0 : ) 1 := by
simp
simp at hx
have : R = |R| := by exact Eq.symm (abs_of_pos hR)
rw [← this]
norm_num
calc R⁻¹ * Complex.abs x
_ ≤ R⁻¹ * R := by
apply mul_le_mul_of_nonneg_left hx
apply inv_nonneg.mpr
exact abs_eq_self.mp (id (Eq.symm this))
_ = 1 := by
apply inv_mul_cancel₀
exact Ne.symm (ne_of_lt hR)
exact ⟨R⁻¹ • x, hy⟩
apply finsum_eq_of_bijective e
apply Function.bijective_iff_has_inverse.mpr
use e'
constructor
· apply Function.leftInverse_iff_comp.mpr
funext x
dsimp only [e, e', id_eq, eq_mp_eq_cast, Function.comp_apply]
conv =>
left
arg 1
rw [← smul_assoc, smul_eq_mul]
rw [inv_mul_cancel₀ (Ne.symm (ne_of_lt hR))]
rw [one_smul]
· apply Function.rightInverse_iff_comp.mpr
funext x
dsimp only [e, e', id_eq, eq_mp_eq_cast, Function.comp_apply]
conv =>
left
arg 1
rw [← smul_assoc, smul_eq_mul]
rw [mul_inv_cancel₀ (Ne.symm (ne_of_lt hR))]
rw [one_smul]
intro x
simp
by_cases hx : x = (0 : )
rw [hx]
simp
rw [log_mul, log_mul, log_inv, log_inv]
have : R = |R| := by exact Eq.symm (abs_of_pos hR)
rw [← this]
simp
left
congr 1
dsimp [AnalyticOnNhd.order]
rw [← AnalyticAt.order_comp_CLE ]
--
simpa
--
have : R = |R| := by exact Eq.symm (abs_of_pos hR)
rw [← this]
apply inv_ne_zero
exact Ne.symm (ne_of_lt hR)
--
exact Ne.symm (ne_of_lt hR)
--
simp
constructor
· assumption
· exact Ne.symm (ne_of_lt hR)

View File

@ -1,65 +0,0 @@
import Mathlib.Analysis.SpecialFunctions.Integrals
import Mathlib.Analysis.SpecialFunctions.Log.NegMulLog
import Mathlib.MeasureTheory.Integral.CircleIntegral
import Mathlib.MeasureTheory.Measure.Restrict
open scoped Interval Topology
open Real Filter MeasureTheory intervalIntegral
-- The following theorem was suggested by Gareth Ma on Zulip
theorem logInt
{t : }
(ht : 0 < t) :
∫ x in (0 : )..t, log x = t * log t - t := by
rw [← integral_add_adjacent_intervals (b := 1)]
trans (-1) + (t * log t - t + 1)
· congr
· -- ∫ x in 0..1, log x = -1, same proof as before
rw [integral_eq_sub_of_hasDerivAt_of_tendsto (f := fun x ↦ x * log x - x) (fa := 0) (fb := -1)]
· simp
· simp
· intro x hx
norm_num at hx
convert (hasDerivAt_mul_log hx.left.ne.symm).sub (hasDerivAt_id x) using 1
norm_num
· rw [← neg_neg log]
apply IntervalIntegrable.neg
apply intervalIntegrable_deriv_of_nonneg (g := fun x ↦ -(x * log x - x))
· exact (continuous_mul_log.continuousOn.sub continuous_id.continuousOn).neg
· intro x hx
norm_num at hx
convert ((hasDerivAt_mul_log hx.left.ne.symm).sub (hasDerivAt_id x)).neg using 1
norm_num
· intro x hx
norm_num at hx
rw [Pi.neg_apply, Left.nonneg_neg_iff]
exact (log_nonpos_iff hx.left).mpr hx.right.le
· have := tendsto_log_mul_rpow_nhds_zero zero_lt_one
simp_rw [rpow_one, mul_comm] at this
-- tendsto_nhdsWithin_of_tendsto_nhds should be under Tendsto namespace
convert this.sub (tendsto_nhdsWithin_of_tendsto_nhds tendsto_id)
norm_num
· rw [(by simp : -1 = 1 * log 1 - 1)]
apply tendsto_nhdsWithin_of_tendsto_nhds
exact (continuousAt_id.mul (continuousAt_log one_ne_zero)).sub continuousAt_id
· -- ∫ x in 1..t, log x = t * log t + 1, just use integral_log_of_pos
rw [integral_log_of_pos zero_lt_one ht]
norm_num
· abel
· -- log is integrable on [[0, 1]]
rw [← neg_neg log]
apply IntervalIntegrable.neg
apply intervalIntegrable_deriv_of_nonneg (g := fun x ↦ -(x * log x - x))
· exact (continuous_mul_log.continuousOn.sub continuous_id.continuousOn).neg
· intro x hx
norm_num at hx
convert ((hasDerivAt_mul_log hx.left.ne.symm).sub (hasDerivAt_id x)).neg using 1
norm_num
· intro x hx
norm_num at hx
rw [Pi.neg_apply, Left.nonneg_neg_iff]
exact (log_nonpos_iff hx.left).mpr hx.right.le
· -- log is integrable on [[0, t]]
simp [Set.mem_uIcc, ht]

View File

@ -5,7 +5,7 @@
"type": "git", "type": "git",
"subDir": null, "subDir": null,
"scope": "", "scope": "",
"rev": "504007f6f772de93ea967b17320baeac5a21cb55", "rev": "0571c82877b7c2b508cbc9a39e041eb117d050b7",
"name": "mathlib", "name": "mathlib",
"manifestFile": "lake-manifest.json", "manifestFile": "lake-manifest.json",
"inputRev": null, "inputRev": null,