From f480ae2a0fb9a69f2a3dbe2ccc96bd65868eeb00 Mon Sep 17 00:00:00 2001 From: Stefan Kebekus Date: Thu, 30 May 2024 09:57:36 +0200 Subject: [PATCH] Update partialDeriv.lean --- Nevanlinna/partialDeriv.lean | 29 ++++++++++++----------------- 1 file changed, 12 insertions(+), 17 deletions(-) diff --git a/Nevanlinna/partialDeriv.lean b/Nevanlinna/partialDeriv.lean index ce41acc..7ca77f9 100644 --- a/Nevanlinna/partialDeriv.lean +++ b/Nevanlinna/partialDeriv.lean @@ -91,30 +91,25 @@ theorem partialDeriv_contDiff {n : ℕ} {f : E → F} (h : ContDiff 𝕜 (n + 1) theorem partialDeriv_contDiffAt {n : ℕ} {f : E → F} {x : E} (h : ContDiffAt 𝕜 (n + 1) f x) : ∀ v : E, ContDiffAt 𝕜 n (partialDeriv 𝕜 v f) x := by + unfold partialDeriv intro v - let A' := (contDiffAt_succ_iff_hasFDerivAt.1 h) - obtain ⟨f', ⟨u, hu₁, hu₂⟩ , hf'⟩ := A' + let eval_at_v : (E →L[𝕜] F) →L[𝕜] F := + { + toFun := fun l ↦ l v + map_add' := by simp + map_smul' := by simp + } - have : (fun w => (fderiv 𝕜 f w) v) = (fun f => f v) ∘ (fun w => (fderiv 𝕜 f w)) := by + have : (fun w => (fderiv 𝕜 f w) v) = eval_at_v ∘ (fun w => (fderiv 𝕜 f w)) := by rfl rw [this] - apply ContDiffAt.comp - apply fderiv_clm_apply - let A := (contDiffAt_succ_iff_fderiv.1 h).right - simp at A - - have : (fun w => (fderiv 𝕜 f w) v) = (fun f => f v) ∘ (fun w => (fderiv 𝕜 f w)) := by - rfl - - rw [this] - refine ContDiff.comp ?hg A - refine ContDiff.of_succ ?hg.h - refine ContDiff.clm_apply ?hg.h.hf ?hg.h.hg - exact contDiff_id - exact contDiff_const + apply ContDiffAt.continuousLinearMap_comp + -- ContDiffAt 𝕜 (↑n) (fun w => fderiv 𝕜 f w) x + apply ContDiffAt.fderiv_right h + rfl lemma partialDeriv_fderiv {f : E → F} (hf : ContDiff 𝕜 2 f) (z a b : E) :