working…
This commit is contained in:
parent
4387149e33
commit
f4655ef1d3
|
@ -291,18 +291,28 @@ theorem primitive_hasDerivAtBasepoint
|
|||
|
||||
theorem primitive_additivity
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||
(f : ℂ → E)
|
||||
(z₀ : ℂ)
|
||||
(rx ry : ℝ)
|
||||
(hry : 0 < ry)
|
||||
{f : ℂ → E}
|
||||
{z₀ : ℂ}
|
||||
{rx ry : ℝ}
|
||||
(hf : DifferentiableOn ℂ f (Metric.ball z₀.re rx ×ℂ Metric.ball z₀.im ry))
|
||||
(z₁ : ℂ)
|
||||
(hry : 0 < ry)
|
||||
{z₁ : ℂ}
|
||||
(hz₁ : z₁ ∈ (Metric.ball z₀.re rx ×ℂ Metric.ball z₀.im ry))
|
||||
:
|
||||
∃ εx εy : ℝ, ∀ z ∈ (Metric.ball z₁.re εx ×ℂ Metric.ball z₁.im εy), (primitive z₀ f z) - (primitive z₁ f z) - (primitive z₀ f z₁) = 0 := by
|
||||
∃ εx > 0, ∃ εy > 0, ∀ z ∈ (Metric.ball z₁.re εx ×ℂ Metric.ball z₁.im εy), (primitive z₀ f z) - (primitive z₁ f z) - (primitive z₀ f z₁) = 0 := by
|
||||
|
||||
let εx := rx - dist z₀.re z₁.re
|
||||
have hεx : εx > 0 := by
|
||||
sorry
|
||||
let εy := ry - dist z₀.im z₁.im
|
||||
have hεy : εy > 0 := by
|
||||
sorry
|
||||
|
||||
use εx
|
||||
use hεx
|
||||
use εy
|
||||
use hεy
|
||||
|
||||
use rx - dist z₀.re z₁.re
|
||||
use ry - dist z₀.im z₁.im
|
||||
intro z hz
|
||||
|
||||
unfold primitive
|
||||
|
@ -506,20 +516,41 @@ theorem primitive_additivity'
|
|||
primitive z₀ f =ᶠ[nhds z₁] fun z ↦ (primitive z₁ f z) + (primitive z₀ f z₁) := by
|
||||
|
||||
let ε := R - dist z₀ z₁
|
||||
|
||||
have hε : 0 < ε := by
|
||||
dsimp [ε]
|
||||
simp
|
||||
exact Metric.mem_ball'.mp hz₁
|
||||
|
||||
let rx := dist z₀.re z₁.re + ε/(2 : ℝ)
|
||||
let ry := dist z₀.im z₁.im + ε/(2 : ℝ)
|
||||
|
||||
have h'ry : 0 < ry := by
|
||||
sorry
|
||||
dsimp [ry]
|
||||
apply add_pos_of_nonneg_of_pos
|
||||
exact dist_nonneg
|
||||
simpa
|
||||
|
||||
have h'f : DifferentiableOn ℂ f (Metric.ball z₀.re rx ×ℂ Metric.ball z₀.im ry) := by
|
||||
apply hf.mono
|
||||
intro x hx
|
||||
simp
|
||||
let A := hx.1
|
||||
simp at A
|
||||
let B := hx.2
|
||||
simp at B
|
||||
calc dist x z₀
|
||||
_ = √((x.re - z₀.re) ^ 2 + (x.im - z₀.im) ^ 2) := by exact Complex.dist_eq_re_im x z₀
|
||||
_ =
|
||||
sorry
|
||||
|
||||
have h'z₁ : z₁ ∈ (Metric.ball z₀.re rx ×ℂ Metric.ball z₀.im ry) := by
|
||||
sorry
|
||||
dsimp [rx, ry]
|
||||
constructor
|
||||
· rw [dist_comm]; simp; exact hε
|
||||
· rw [dist_comm]; simp; exact hε
|
||||
|
||||
let A := primitive_additivity f z₀ rx ry h'ry h'f z₁ h'z₁
|
||||
obtain ⟨εx, εy, hε⟩ := A
|
||||
obtain ⟨εx, hεx, εy, hεy, hε⟩ := primitive_additivity h'f h'ry h'z₁
|
||||
|
||||
apply Filter.eventuallyEq_iff_exists_mem.2
|
||||
use (Metric.ball z₁.re εx ×ℂ Metric.ball z₁.im εy)
|
||||
|
@ -529,10 +560,8 @@ theorem primitive_additivity'
|
|||
exact Metric.isOpen_ball
|
||||
exact Metric.isOpen_ball
|
||||
constructor
|
||||
· simp
|
||||
sorry
|
||||
· simp
|
||||
sorry
|
||||
· simpa
|
||||
· simpa
|
||||
· intro x hx
|
||||
simp
|
||||
rw [← sub_zero (primitive z₀ f x), ← hε x hx]
|
||||
|
|
Loading…
Reference in New Issue