Working…
This commit is contained in:
parent
e37ef6da16
commit
f33953de0a
|
@ -2,6 +2,7 @@ import Mathlib.Analysis.Complex.CauchyIntegral
|
||||||
|
|
||||||
#check DiffContOnCl.circleIntegral_sub_inv_smul
|
#check DiffContOnCl.circleIntegral_sub_inv_smul
|
||||||
|
|
||||||
|
open Real
|
||||||
|
|
||||||
theorem CauchyIntegralFormula :
|
theorem CauchyIntegralFormula :
|
||||||
∀
|
∀
|
||||||
|
@ -10,8 +11,45 @@ theorem CauchyIntegralFormula :
|
||||||
{f : ℂ → ℂ}, -- Holomorphic function
|
{f : ℂ → ℂ}, -- Holomorphic function
|
||||||
DiffContOnCl ℂ f (Metric.ball 0 R)
|
DiffContOnCl ℂ f (Metric.ball 0 R)
|
||||||
→ w ∈ Metric.ball 0 R
|
→ w ∈ Metric.ball 0 R
|
||||||
→ (∮ (z : ℂ) in C(0, R), (z - w)⁻¹ • f z) = (2 * Real.pi * Complex.I) • f w := by
|
→ (∮ (z : ℂ) in C(0, R), (z - w)⁻¹ • f z) = (2 * π * Complex.I) • f w := by
|
||||||
|
|
||||||
exact DiffContOnCl.circleIntegral_sub_inv_smul
|
exact DiffContOnCl.circleIntegral_sub_inv_smul
|
||||||
|
|
||||||
#check CauchyIntegralFormula
|
#check CauchyIntegralFormula
|
||||||
|
#check HasDerivAt.continuousAt
|
||||||
|
#check Real.log
|
||||||
|
#check Complex.log
|
||||||
|
#check Complex.exp
|
||||||
|
|
||||||
|
theorem SimpleCauchyFormula :
|
||||||
|
∀
|
||||||
|
{R : ℝ} -- Radius of the ball
|
||||||
|
{w : ℂ} -- Point in the interior of the ball
|
||||||
|
{f : ℂ → ℂ}, -- Holomorphic function
|
||||||
|
Differentiable ℂ f
|
||||||
|
→ w ∈ Metric.ball 0 R
|
||||||
|
→ (∮ (z : ℂ) in C(0, R), (z - w)⁻¹ • f z) = (2 * Real.pi * Complex.I) • f w := by
|
||||||
|
|
||||||
|
intro R w f fHyp
|
||||||
|
|
||||||
|
apply DiffContOnCl.circleIntegral_sub_inv_smul
|
||||||
|
|
||||||
|
constructor
|
||||||
|
· exact Differentiable.differentiableOn fHyp
|
||||||
|
· suffices Continuous f from by
|
||||||
|
exact Continuous.continuousOn this
|
||||||
|
rw [continuous_iff_continuousAt]
|
||||||
|
intro x
|
||||||
|
exact DifferentiableAt.continuousAt (fHyp x)
|
||||||
|
|
||||||
|
|
||||||
|
theorem JensenFormula₂ :
|
||||||
|
∀
|
||||||
|
{R : ℝ} -- Radius of the ball
|
||||||
|
{w : ℂ} -- Point in the interior of the ball
|
||||||
|
{f : ℂ → ℂ}, -- Holomorphic function
|
||||||
|
Differentiable ℂ f
|
||||||
|
→ ∀ z ∈ Metric.ball 0 R, f z ≠ 0
|
||||||
|
→ (∮ (z : ℂ) in C(0, R), Complex.log ‖f z‖ ) = 2 * π * R * log ‖f 0‖ := by
|
||||||
|
|
||||||
|
sorry
|
||||||
|
|
Loading…
Reference in New Issue