Working…

This commit is contained in:
Stefan Kebekus 2024-12-11 12:36:44 +01:00
parent c7a3804b0c
commit ee7f20c593
2 changed files with 68 additions and 0 deletions

View File

@ -0,0 +1,33 @@
import Mathlib.Analysis.Analytic.Meromorphic
import Nevanlinna.analyticAt
import Nevanlinna.divisor
import Nevanlinna.meromorphicAt
import Nevanlinna.meromorphicOn_divisor
import Nevanlinna.stronglyMeromorphicOn
import Nevanlinna.mathlibAddOn
import Mathlib.MeasureTheory.Integral.CircleIntegral
open scoped Interval Topology
open Real Filter MeasureTheory intervalIntegral
theorem integrability_congr_changeDiscrete
{f₁ f₂ : }
{r : }
(hf : f₁ =ᶠ[Filter.codiscreteWithin ] f₂) :
IntervalIntegrable (f₁ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) → IntervalIntegrable (f₂ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) := by
intro hf₁
apply IntervalIntegrable.congr hf₁
rw [Filter.eventuallyEq_iff_exists_mem]
use (circleMap 0 r)⁻¹' { z | f₁ z = f₂ z}
constructor
· apply Set.Countable.measure_zero
have : (circleMap 0 r ⁻¹' {z | f₁ z = f₂ z})ᶜ = (circleMap 0 r ⁻¹' {z | f₁ z = f₂ z}ᶜ) := by
exact rfl
rw [this]
apply Set.Countable.preimage_circleMap
sorry
sorry
· sorry

View File

@ -4,6 +4,22 @@ import Mathlib.Algebra.BigOperators.Finprod
open Topology
theorem MeromorphicOn.analyticOnCodiscreteWithin
{f : }
{U : Set }
(hf : MeromorphicOn f U) :
{ x | AnalyticAt f x } ∈ Filter.codiscreteWithin U := by
rw [mem_codiscreteWithin]
intro x hx
simp
rw [← Filter.eventually_mem_set]
apply Filter.Eventually.mono (hf x hx).eventually_analyticAt
simp
tauto
/- Strongly MeromorphicOn -/
def StronglyMeromorphicOn
(f : )
@ -106,6 +122,25 @@ theorem makeStronglyMeromorphicOn_changeDiscrete'
simp [hz₀]
theorem makeStronglyMeromorphicOn_changeDiscrete''
{f : }
{U : Set }
(hf : MeromorphicOn f U) :
f =ᶠ[Filter.codiscreteWithin U] hf.makeStronglyMeromorphicOn := by
rw [Filter.eventuallyEq_iff_exists_mem]
use { x | AnalyticAt f x }
constructor
· exact MeromorphicOn.analyticOnCodiscreteWithin hf
· intro x hx
simp at hx
rw [MeromorphicOn.makeStronglyMeromorphicOn]
by_cases h₁x : x ∈ U
· simp [h₁x]
rw [← StronglyMeromorphicAt.makeStronglyMeromorphic_id hx.stronglyMeromorphicAt]
· simp [h₁x]
theorem stronglyMeromorphicOn_of_makeStronglyMeromorphicOn
{f : }
{U : Set }