Update holomorphic_zero.lean
This commit is contained in:
parent
97293e3a60
commit
ec79ed7ba1
|
@ -1,3 +1,5 @@
|
||||||
|
import Init.Classical
|
||||||
|
import Mathlib.Analysis.Analytic.Meromorphic
|
||||||
import Mathlib.Topology.ContinuousOn
|
import Mathlib.Topology.ContinuousOn
|
||||||
import Mathlib.Analysis.Analytic.IsolatedZeros
|
import Mathlib.Analysis.Analytic.IsolatedZeros
|
||||||
import Nevanlinna.holomorphic
|
import Nevanlinna.holomorphic
|
||||||
|
@ -247,7 +249,7 @@ theorem zeroDivisor_finiteOnCompact
|
||||||
{U : Set ℂ}
|
{U : Set ℂ}
|
||||||
(hU : IsPreconnected U)
|
(hU : IsPreconnected U)
|
||||||
(h₁f : AnalyticOn ℂ f U)
|
(h₁f : AnalyticOn ℂ f U)
|
||||||
(h₂f : ∃ z ∈ U, f z ≠ 0)
|
(h₂f : ∃ z ∈ U, f z ≠ 0) -- not needed!
|
||||||
(h₂U : IsCompact U) :
|
(h₂U : IsCompact U) :
|
||||||
Set.Finite (U ∩ Function.support (zeroDivisor f)) := by
|
Set.Finite (U ∩ Function.support (zeroDivisor f)) := by
|
||||||
|
|
||||||
|
@ -268,26 +270,120 @@ theorem zeroDivisor_finiteOnCompact
|
||||||
exact Set.inter_subset_right
|
exact Set.inter_subset_right
|
||||||
|
|
||||||
|
|
||||||
|
theorem AnalyticOn.order_eq_nat_iff
|
||||||
|
{f : ℂ → ℂ}
|
||||||
|
{U : Set ℂ}
|
||||||
|
{z₀ : ℂ}
|
||||||
|
(hf : AnalyticOn ℂ f U)
|
||||||
|
(hz₀ : z₀ ∈ U)
|
||||||
|
(n : ℕ) :
|
||||||
|
(hf z₀ hz₀).order = ↑n → ∃ (g : ℂ → ℂ), AnalyticOn ℂ g U ∧ g z₀ ≠ 0 ∧ ∀ z ∈ U, f z = (z - z₀) ^ n • g z := by
|
||||||
|
|
||||||
|
intro hn
|
||||||
|
|
||||||
|
obtain ⟨gloc, h₁gloc, h₂gloc, h₃gloc⟩ := (AnalyticAt.order_eq_nat_iff (hf z₀ hz₀) n).1 hn
|
||||||
|
|
||||||
|
let g : ℂ → ℂ := fun z ↦ if hz : z = z₀ then gloc z₀ else (f z) / (z - z₀) ^ n
|
||||||
|
|
||||||
|
have t₀ : ∀ᶠ (z : ℂ) in nhds z₀, g z = gloc z := by
|
||||||
|
rw [eventually_nhds_iff]
|
||||||
|
rw [eventually_nhds_iff] at h₃gloc
|
||||||
|
obtain ⟨t, h₁t, h₂t, h₃t⟩ := h₃gloc
|
||||||
|
use t
|
||||||
|
constructor
|
||||||
|
· intro y h₁y
|
||||||
|
by_cases h₂y : y = z₀
|
||||||
|
· dsimp [g]; simp [h₂y]
|
||||||
|
· dsimp [g]; simp [h₂y]
|
||||||
|
rw [div_eq_iff_mul_eq, eq_comm, mul_comm]
|
||||||
|
exact h₁t y h₁y
|
||||||
|
norm_num
|
||||||
|
rw [sub_eq_zero]
|
||||||
|
tauto
|
||||||
|
· constructor
|
||||||
|
· assumption
|
||||||
|
· assumption
|
||||||
|
|
||||||
|
have t₁ {z₁ : ℂ} : z₁ ≠ z₀ → ∀ᶠ (z : ℂ) in nhds z₁, g z = f z / (z - z₀) ^ n := by
|
||||||
|
intro hz₁
|
||||||
|
rw [eventually_nhds_iff]
|
||||||
|
use {z₀}ᶜ
|
||||||
|
constructor
|
||||||
|
· intro y hy
|
||||||
|
simp at hy
|
||||||
|
dsimp [g]
|
||||||
|
simp [hy]
|
||||||
|
· constructor
|
||||||
|
· exact isOpen_compl_singleton
|
||||||
|
· tauto
|
||||||
|
|
||||||
|
use g
|
||||||
|
constructor
|
||||||
|
· -- AnalyticOn ℂ g U
|
||||||
|
intro z h₁z
|
||||||
|
by_cases h₂z : z = z₀
|
||||||
|
· rw [h₂z]
|
||||||
|
apply AnalyticAt.congr h₁gloc
|
||||||
|
exact Filter.EventuallyEq.symm t₀
|
||||||
|
· simp_rw [eq_comm] at t₁
|
||||||
|
apply AnalyticAt.congr _ (t₁ h₂z)
|
||||||
|
apply AnalyticAt.div
|
||||||
|
exact hf z h₁z
|
||||||
|
apply AnalyticAt.pow
|
||||||
|
apply AnalyticAt.sub
|
||||||
|
apply analyticAt_id
|
||||||
|
exact analyticAt_const
|
||||||
|
simp
|
||||||
|
rw [sub_eq_zero]
|
||||||
|
tauto
|
||||||
|
|
||||||
|
|
||||||
theorem eliminatingZeros
|
theorem eliminatingZeros
|
||||||
{f : ℂ → ℂ}
|
{f : ℂ → ℂ}
|
||||||
{z₀ : ℂ}
|
{U : Set ℂ}
|
||||||
{R : ℝ}
|
(h₁U : IsPreconnected U)
|
||||||
(h₁f : ∀ z ∈ Metric.closedBall z₀ R, HolomorphicAt f z)
|
(h₂U : IsCompact U)
|
||||||
(h₂f : ∃ z ∈ Metric.ball z₀ R, f z ≠ 0) :
|
(h₁f : AnalyticOn ℂ f U)
|
||||||
∃ F : ℂ → ℂ, ∀ z ∈ Metric.ball z₀ R, (HolomorphicAt F z) ∧ (f z = (F z) * ∏ᶠ a ∈ Metric.ball z₀ R, (z - a) ^ (zeroDivisor f a) ) := by
|
(h₂f : ∃ z ∈ U, f z ≠ 0) :
|
||||||
|
∃ F : ℂ → ℂ, (AnalyticOn ℂ F U) ∧ (f = F * ∏ᶠ a ∈ (U ∩ (zeroDivisor f).support), fun z ↦ (z - a) ^ (zeroDivisor f a)) := by
|
||||||
|
|
||||||
|
have hs := zeroDivisor_finiteOnCompact h₁U h₁f h₂f h₂U
|
||||||
|
rw [finprod_mem_eq_finite_toFinset_prod _ hs]
|
||||||
|
|
||||||
|
let A := hs.card_eq
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
let F : ℂ → ℂ := by
|
let F : ℂ → ℂ := by
|
||||||
intro z
|
intro z
|
||||||
if hz : z ∈ (Metric.closedBall z₀ R) ∩ Function.support (zeroDivisor f) then
|
if hz : z ∈ U ∩ (zeroDivisor f).support then
|
||||||
exact 0
|
exact (Classical.choose (zeroDivisor_support_iff.1 hz.2).2.2) z
|
||||||
else
|
else
|
||||||
exact f z * (∏ᶠ a ∈ Metric.ball z₀ R, (z - a) ^ (zeroDivisor f a))⁻¹
|
exact (f z) / ∏ i ∈ hs.toFinset, (z - i) ^ zeroDivisor f i
|
||||||
|
|
||||||
use F
|
use F
|
||||||
intro z hz
|
constructor
|
||||||
by_cases h₂z : z ∈ (Metric.closedBall z₀ R) ∩ Function.support (zeroDivisor f)
|
· intro z h₁z
|
||||||
· -- Positive case
|
by_cases h₂z : z ∈ (zeroDivisor f).support
|
||||||
sorry
|
· -- case: z ∈ Function.support (zeroDivisor f)
|
||||||
|
have : z ∈ U ∩ (zeroDivisor f).support := by exact Set.mem_inter h₁z h₂z
|
||||||
|
|
||||||
· -- Negative case
|
|
||||||
sorry
|
sorry
|
||||||
|
· sorry
|
||||||
|
|
||||||
|
have : MeromorphicOn F U := by
|
||||||
|
apply MeromorphicOn.div
|
||||||
|
exact AnalyticOn.meromorphicOn h₁f
|
||||||
|
apply AnalyticOn.meromorphicOn
|
||||||
|
apply Finset.analyticOn_prod
|
||||||
|
intro n hn
|
||||||
|
apply AnalyticOn.pow
|
||||||
|
apply AnalyticOn.sub
|
||||||
|
exact analyticOn_id ℂ
|
||||||
|
exact analyticOn_const
|
||||||
|
|
||||||
|
--use F
|
||||||
|
|
||||||
|
|
||||||
|
sorry
|
||||||
|
|
Loading…
Reference in New Issue