Update stronglyMeromorphic_JensenFormula.lean
This commit is contained in:
parent
8d72fae4dc
commit
ebfa0e9bd0
@ -149,11 +149,32 @@ theorem jensen_case_R_eq_one
|
|||||||
|
|
||||||
have decompose_int_G : ∫ (x : ℝ) in (0)..2 * π, G (circleMap 0 1 x)
|
have decompose_int_G : ∫ (x : ℝ) in (0)..2 * π, G (circleMap 0 1 x)
|
||||||
= (∫ (x : ℝ) in (0)..2 * π, log (Complex.abs (F (circleMap 0 1 x))))
|
= (∫ (x : ℝ) in (0)..2 * π, log (Complex.abs (F (circleMap 0 1 x))))
|
||||||
+ ∑ x ∈ (finiteZeros h₁U h₂U h₁f h'₂f).toFinset, (h₁f.order x).toNat * ∫ (x_1 : ℝ) in (0)..2 * π, log (Complex.abs (circleMap 0 1 x_1 - ↑x)) := by
|
+ ∑ᶠ x, (h₁f.meromorphicOn.divisor x) * ∫ (x_1 : ℝ) in (0)..2 * π, log (Complex.abs (circleMap 0 1 x_1 - ↑x)) := by
|
||||||
dsimp [G]
|
dsimp [G]
|
||||||
|
|
||||||
rw [intervalIntegral.integral_add]
|
rw [intervalIntegral.integral_add]
|
||||||
|
congr
|
||||||
|
have t₀ {x : ℝ} : Function.support (fun s ↦ (h₁f.meromorphicOn.divisor s) * log (Complex.abs (circleMap 0 1 x - s))) ⊆ h₃f.toFinset := by
|
||||||
|
intro s hs
|
||||||
|
simp at hs
|
||||||
|
simp [hs.1]
|
||||||
|
conv =>
|
||||||
|
left
|
||||||
|
arg 1
|
||||||
|
intro x
|
||||||
|
rw [finsum_eq_sum_of_support_subset _ t₀]
|
||||||
rw [intervalIntegral.integral_finset_sum]
|
rw [intervalIntegral.integral_finset_sum]
|
||||||
simp_rw [intervalIntegral.integral_const_mul]
|
let G' := fun x ↦ ((h₁f.meromorphicOn.divisor x) : ℂ) * ∫ (x_1 : ℝ) in (0)..2 * π, log (Complex.abs (circleMap 0 1 x_1 - x))
|
||||||
|
have t₁ : (Function.support fun x ↦ (h₁f.meromorphicOn.divisor x) * ∫ (x_1 : ℝ) in (0)..2 * π, log (Complex.abs (circleMap 0 1 x_1 - x))) ⊆ h₃f.toFinset := by
|
||||||
|
simp
|
||||||
|
intro s
|
||||||
|
contrapose!
|
||||||
|
simp
|
||||||
|
tauto
|
||||||
|
conv =>
|
||||||
|
right
|
||||||
|
rw [finsum_eq_sum_of_support_subset _ t₁]
|
||||||
|
simp
|
||||||
|
|
||||||
-- ∀ i ∈ (finiteZeros h₁U h₂U h'₁f h'₂f).toFinset,
|
-- ∀ i ∈ (finiteZeros h₁U h₂U h'₁f h'₂f).toFinset,
|
||||||
-- IntervalIntegrable (fun x => (h'₁f.order i).toNat *
|
-- IntervalIntegrable (fun x => (h'₁f.order i).toNat *
|
||||||
@ -161,7 +182,7 @@ theorem jensen_case_R_eq_one
|
|||||||
intro i _
|
intro i _
|
||||||
apply IntervalIntegrable.const_mul
|
apply IntervalIntegrable.const_mul
|
||||||
--simp at this
|
--simp at this
|
||||||
by_cases h₂i : ‖i.1‖ = 1
|
by_cases h₂i : ‖i‖ = 1
|
||||||
-- case pos
|
-- case pos
|
||||||
exact int'₂ h₂i
|
exact int'₂ h₂i
|
||||||
-- case neg
|
-- case neg
|
||||||
@ -195,7 +216,9 @@ theorem jensen_case_R_eq_one
|
|||||||
rw [this]
|
rw [this]
|
||||||
apply ContinuousAt.comp
|
apply ContinuousAt.comp
|
||||||
apply Real.continuousAt_log
|
apply Real.continuousAt_log
|
||||||
simp [h₂F]
|
simp
|
||||||
|
exact h₃F ⟨(circleMap 0 1 x), (by simp)⟩
|
||||||
|
|
||||||
-- ContinuousAt (⇑Complex.abs ∘ F ∘ fun x => circleMap 0 1 x) x
|
-- ContinuousAt (⇑Complex.abs ∘ F ∘ fun x => circleMap 0 1 x) x
|
||||||
apply ContinuousAt.comp
|
apply ContinuousAt.comp
|
||||||
apply Complex.continuous_abs.continuousAt
|
apply Complex.continuous_abs.continuousAt
|
||||||
|
Loading…
Reference in New Issue
Block a user