Working…
This commit is contained in:
@@ -282,6 +282,17 @@ theorem analyticAt_finprod
|
||||
exact analyticAt_const
|
||||
|
||||
|
||||
lemma AnalyticAt.zpow_nonneg
|
||||
{f : ℂ → ℂ}
|
||||
{z₀ : ℂ}
|
||||
{n : ℤ}
|
||||
(hf : AnalyticAt ℂ f z₀)
|
||||
(hn : 0 ≤ n) :
|
||||
AnalyticAt ℂ (fun x ↦ (f x) ^ n) z₀ := by
|
||||
simp_rw [(Eq.symm (Int.toNat_of_nonneg hn) : n = OfNat.ofNat n.toNat), zpow_ofNat]
|
||||
apply AnalyticAt.pow hf
|
||||
|
||||
|
||||
theorem AnalyticAt.zpow
|
||||
{f : ℂ → ℂ}
|
||||
{z₀ : ℂ}
|
||||
@@ -289,5 +300,11 @@ theorem AnalyticAt.zpow
|
||||
(h₁f : AnalyticAt ℂ f z₀)
|
||||
(h₂f : f z₀ ≠ 0) :
|
||||
AnalyticAt ℂ (fun x ↦ (f x) ^ n) z₀ := by
|
||||
|
||||
sorry
|
||||
by_cases hn : 0 ≤ n
|
||||
· exact zpow_nonneg h₁f hn
|
||||
· rw [(Int.eq_neg_comm.mp rfl : n = - (- n))]
|
||||
conv =>
|
||||
arg 2
|
||||
intro x
|
||||
rw [zpow_neg]
|
||||
exact AnalyticAt.inv (zpow_nonneg h₁f (by linarith)) (zpow_ne_zero (-n) h₂f)
|
||||
|
Reference in New Issue
Block a user