Working…
This commit is contained in:
parent
745e614016
commit
e901f241cc
|
@ -357,8 +357,6 @@ theorem AnalyticOnCompact.eliminateZeros
|
||||||
· exact inter
|
· exact inter
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
theorem AnalyticOnCompact.eliminateZeros₂
|
theorem AnalyticOnCompact.eliminateZeros₂
|
||||||
{f : ℂ → ℂ}
|
{f : ℂ → ℂ}
|
||||||
{U : Set ℂ}
|
{U : Set ℂ}
|
||||||
|
|
|
@ -81,18 +81,14 @@ theorem jensen_case_R_eq_one
|
||||||
(h₂f : f 0 ≠ 0) :
|
(h₂f : f 0 ≠ 0) :
|
||||||
log ‖f 0‖ = -∑ᶠ s, (h'₁f.order s).toNat * log (‖s.1‖⁻¹) + (2 * π)⁻¹ * ∫ (x : ℝ) in (0)..(2 * π), log ‖f (circleMap 0 1 x)‖ := by
|
log ‖f 0‖ = -∑ᶠ s, (h'₁f.order s).toNat * log (‖s.1‖⁻¹) + (2 * π)⁻¹ * ∫ (x : ℝ) in (0)..(2 * π), log ‖f (circleMap 0 1 x)‖ := by
|
||||||
|
|
||||||
have h₁U : IsPreconnected (Metric.closedBall (0 : ℂ) 1) := by
|
have h₁U : IsPreconnected (Metric.closedBall (0 : ℂ) 1) :=
|
||||||
apply IsConnected.isPreconnected
|
(convex_closedBall (0 : ℂ) 1).isPreconnected
|
||||||
apply Convex.isConnected
|
|
||||||
exact convex_closedBall 0 1
|
|
||||||
exact Set.nonempty_of_nonempty_subtype
|
|
||||||
|
|
||||||
have h₂U : IsCompact (Metric.closedBall (0 : ℂ) 1) := isCompact_closedBall 0 1
|
have h₂U : IsCompact (Metric.closedBall (0 : ℂ) 1) :=
|
||||||
|
isCompact_closedBall 0 1
|
||||||
|
|
||||||
have h'₂f : ∃ u ∈ (Metric.closedBall (0 : ℂ) 1), f u ≠ 0 := by
|
have h'₂f : ∃ u ∈ (Metric.closedBall (0 : ℂ) 1), f u ≠ 0 := by
|
||||||
use 0
|
use 0; simp; exact h₂f
|
||||||
simp
|
|
||||||
exact h₂f
|
|
||||||
|
|
||||||
obtain ⟨F, h₁F, h₂F, h₃F⟩ := AnalyticOnCompact.eliminateZeros₂ h₁U h₂U h'₁f h'₂f
|
obtain ⟨F, h₁F, h₂F, h₃F⟩ := AnalyticOnCompact.eliminateZeros₂ h₁U h₂U h'₁f h'₂f
|
||||||
|
|
||||||
|
@ -127,24 +123,31 @@ theorem jensen_case_R_eq_one
|
||||||
dsimp [G]
|
dsimp [G]
|
||||||
abel
|
abel
|
||||||
|
|
||||||
-- ∀ x ∈ (ZeroFinset h₁f).attach, Complex.abs (z - ↑x) ^ order x ≠ 0
|
-- ∀ x ∈ ⋯.toFinset, Complex.abs (z - ↑x) ^ (h'₁f.order x).toNat ≠ 0
|
||||||
|
have : ∀ x ∈ (finiteZeros h₁U h₂U h'₁f h'₂f).toFinset, Complex.abs (z - ↑x) ^ (h'₁f.order x).toNat ≠ 0 := by
|
||||||
|
intro s hs
|
||||||
|
simp at hs
|
||||||
|
simp
|
||||||
|
intro h₂s
|
||||||
|
rw [h₂s] at h₂z
|
||||||
|
tauto
|
||||||
|
exact this
|
||||||
|
|
||||||
simp
|
-- ∏ x ∈ ⋯.toFinset, Complex.abs (z - ↑x) ^ (h'₁f.order x).toNat ≠ 0
|
||||||
intro s hs
|
have : ∀ x ∈ (finiteZeros h₁U h₂U h'₁f h'₂f).toFinset, Complex.abs (z - ↑x) ^ (h'₁f.order x).toNat ≠ 0 := by
|
||||||
rw [ZeroFinset_mem_iff h₁f s] at hs
|
intro s hs
|
||||||
rw [← hs.2] at h₂z
|
simp at hs
|
||||||
tauto
|
simp
|
||||||
|
intro h₂s
|
||||||
|
rw [h₂s] at h₂z
|
||||||
|
tauto
|
||||||
|
rw [Finset.prod_ne_zero_iff]
|
||||||
|
exact this
|
||||||
|
|
||||||
-- Complex.abs (F z) ≠ 0
|
-- Complex.abs (F z) ≠ 0
|
||||||
simp
|
simp
|
||||||
exact h₂F z h₁z
|
exact h₂F z h₁z
|
||||||
|
|
||||||
-- ∏ I : { x // x ∈ S }, Complex.abs (z - a I) ≠ 0
|
|
||||||
by_contra C
|
|
||||||
obtain ⟨s, h₁s, h₂s⟩ := Finset.prod_eq_zero_iff.1 C
|
|
||||||
simp at h₂s
|
|
||||||
rw [← ((ZeroFinset_mem_iff h₁f s).1 (Finset.coe_mem s)).2, h₂s.1] at h₂z
|
|
||||||
tauto
|
|
||||||
|
|
||||||
have : ∫ (x : ℝ) in (0)..2 * π, log ‖f (circleMap 0 1 x)‖ = ∫ (x : ℝ) in (0)..2 * π, G (circleMap 0 1 x) := by
|
have : ∫ (x : ℝ) in (0)..2 * π, log ‖f (circleMap 0 1 x)‖ = ∫ (x : ℝ) in (0)..2 * π, G (circleMap 0 1 x) := by
|
||||||
|
|
||||||
|
@ -159,29 +162,24 @@ theorem jensen_case_R_eq_one
|
||||||
simp at ha
|
simp at ha
|
||||||
simp
|
simp
|
||||||
by_contra C
|
by_contra C
|
||||||
have : (circleMap 0 1 a) ∈ Metric.closedBall 0 1 := by
|
have : (circleMap 0 1 a) ∈ Metric.closedBall 0 1 :=
|
||||||
sorry
|
circleMap_mem_closedBall 0 (zero_le_one' ℝ) a
|
||||||
exact ha.2 (decompose_f (circleMap 0 1 a) this C)
|
exact ha.2 (decompose_f (circleMap 0 1 a) this C)
|
||||||
|
|
||||||
apply Set.Countable.mono t₀
|
apply Set.Countable.mono t₀
|
||||||
apply Set.Countable.preimage_circleMap
|
apply Set.Countable.preimage_circleMap
|
||||||
apply Set.Finite.countable
|
apply Set.Finite.countable
|
||||||
apply finiteZeros
|
let A := finiteZeros h₁U h₂U h'₁f h'₂f
|
||||||
|
|
||||||
-- IsPreconnected (Metric.closedBall (0 : ℂ) 1)
|
have : (Metric.closedBall 0 1 ∩ f ⁻¹' {0}) = (Metric.closedBall 0 1).restrict f ⁻¹' {0} := by
|
||||||
|
ext z
|
||||||
apply IsConnected.isPreconnected
|
simp
|
||||||
apply Convex.isConnected
|
tauto
|
||||||
exact convex_closedBall 0 1
|
rw [this]
|
||||||
exact Set.nonempty_of_nonempty_subtype
|
exact Set.Finite.image Subtype.val A
|
||||||
--
|
|
||||||
exact isCompact_closedBall 0 1
|
|
||||||
--
|
|
||||||
exact h'₁f
|
|
||||||
use 0
|
|
||||||
exact ⟨Metric.mem_closedBall_self (zero_le_one' ℝ), h₂f⟩
|
|
||||||
exact Ne.symm (zero_ne_one' ℝ)
|
exact Ne.symm (zero_ne_one' ℝ)
|
||||||
|
|
||||||
|
|
||||||
have h₁Gi : ∀ i ∈ (ZeroFinset h₁f h₂f).attach, IntervalIntegrable (fun x => log (Complex.abs (circleMap 0 1 x - ↑i))) MeasureTheory.volume 0 (2 * π) := by
|
have h₁Gi : ∀ i ∈ (ZeroFinset h₁f h₂f).attach, IntervalIntegrable (fun x => log (Complex.abs (circleMap 0 1 x - ↑i))) MeasureTheory.volume 0 (2 * π) := by
|
||||||
-- This is hard. Need to invoke specialFunctions_CircleIntegral_affine.
|
-- This is hard. Need to invoke specialFunctions_CircleIntegral_affine.
|
||||||
sorry
|
sorry
|
||||||
|
|
Loading…
Reference in New Issue