Cleanup
This commit is contained in:
parent
688347a837
commit
e8fa4b646d
|
@ -1,11 +1,6 @@
|
||||||
import Mathlib.Analysis.Analytic.Linear
|
|
||||||
import Init.Classical
|
|
||||||
import Mathlib.Analysis.Analytic.Meromorphic
|
|
||||||
import Mathlib.Topology.ContinuousOn
|
|
||||||
import Mathlib.Analysis.Analytic.IsolatedZeros
|
|
||||||
import Mathlib.Analysis.Analytic.Constructions
|
import Mathlib.Analysis.Analytic.Constructions
|
||||||
import Nevanlinna.holomorphic
|
import Mathlib.Analysis.Analytic.IsolatedZeros
|
||||||
|
import Mathlib.Analysis.Complex.Basic
|
||||||
|
|
||||||
|
|
||||||
theorem AnalyticOn.order_eq_nat_iff
|
theorem AnalyticOn.order_eq_nat_iff
|
||||||
|
@ -97,7 +92,7 @@ theorem AnalyticOn.order_eq_nat_iff
|
||||||
exact ⟨h₁g z₀ hz₀, ⟨h₂g, Filter.eventually_of_forall h₃g⟩⟩
|
exact ⟨h₁g z₀ hz₀, ⟨h₂g, Filter.eventually_of_forall h₃g⟩⟩
|
||||||
|
|
||||||
|
|
||||||
theorem AnalyticOn.order_of_mul
|
theorem AnalyticAt.order_mul
|
||||||
{f₁ f₂ : ℂ → ℂ}
|
{f₁ f₂ : ℂ → ℂ}
|
||||||
{z₀ : ℂ}
|
{z₀ : ℂ}
|
||||||
(hf₁ : AnalyticAt ℂ f₁ z₀)
|
(hf₁ : AnalyticAt ℂ f₁ z₀)
|
||||||
|
@ -183,10 +178,11 @@ theorem AnalyticOn.eliminateZeros
|
||||||
have h₁φ : AnalyticAt ℂ φ b₀ := by
|
have h₁φ : AnalyticAt ℂ φ b₀ := by
|
||||||
dsimp [φ]
|
dsimp [φ]
|
||||||
apply Finset.analyticAt_prod
|
apply Finset.analyticAt_prod
|
||||||
intro b hb
|
intro b _
|
||||||
apply AnalyticAt.pow
|
apply AnalyticAt.pow
|
||||||
apply AnalyticAt.sub
|
apply AnalyticAt.sub
|
||||||
apply analyticAt_id
|
apply analyticAt_id ℂ
|
||||||
|
exact analyticAt_const
|
||||||
|
|
||||||
have h₂φ : h₁φ.order = (0 : ℕ) := by
|
have h₂φ : h₁φ.order = (0 : ℕ) := by
|
||||||
rw [AnalyticAt.order_eq_nat_iff h₁φ 0]
|
rw [AnalyticAt.order_eq_nat_iff h₁φ 0]
|
||||||
|
@ -198,13 +194,16 @@ theorem AnalyticOn.eliminateZeros
|
||||||
push_neg
|
push_neg
|
||||||
rw [Finset.prod_ne_zero_iff]
|
rw [Finset.prod_ne_zero_iff]
|
||||||
intro a ha
|
intro a ha
|
||||||
have AA : b₀.1 - a ≠ 0 := by
|
simp
|
||||||
sorry
|
have : ¬ (b₀.1 - a.1 = 0) := by
|
||||||
simp [AA]
|
by_contra C
|
||||||
|
rw [sub_eq_zero] at C
|
||||||
|
rw [SetCoe.ext C] at hb
|
||||||
|
tauto
|
||||||
|
tauto
|
||||||
· simp
|
· simp
|
||||||
|
|
||||||
rw [AnalyticOn.order_of_mul h₁φ (h₁g₀ b₀ b₀.2)]
|
rw [AnalyticAt.order_mul h₁φ (h₁g₀ b₀ b₀.2)]
|
||||||
|
|
||||||
rw [h₂φ]
|
rw [h₂φ]
|
||||||
simp
|
simp
|
||||||
|
|
|
@ -3,6 +3,7 @@ import Mathlib.Analysis.Analytic.Meromorphic
|
||||||
import Mathlib.Topology.ContinuousOn
|
import Mathlib.Topology.ContinuousOn
|
||||||
import Mathlib.Analysis.Analytic.IsolatedZeros
|
import Mathlib.Analysis.Analytic.IsolatedZeros
|
||||||
import Nevanlinna.holomorphic
|
import Nevanlinna.holomorphic
|
||||||
|
import Nevanlinna.analyticOn_zeroSet
|
||||||
|
|
||||||
|
|
||||||
noncomputable def zeroDivisor
|
noncomputable def zeroDivisor
|
||||||
|
|
Loading…
Reference in New Issue