Cleanup
This commit is contained in:
parent
a95c34fd05
commit
e843786097
|
@ -11,5 +11,44 @@ theorem MeromorphicAt.eventually_eq_zero_or_eventually_ne_zero
|
|||
{f : ℂ → ℂ}
|
||||
{z₀ : ℂ}
|
||||
(hf : MeromorphicAt f z₀) :
|
||||
(∀ᶠ (z : ℂ) in nhds z₀, f z = 0) ∨ ∀ᶠ (z : ℂ) in nhdsWithin z₀ {z₀}ᶜ, f z ≠ 0 := by
|
||||
sorry
|
||||
(∀ᶠ (z : ℂ) in nhdsWithin z₀ {z₀}ᶜ, f z = 0) ∨ ∀ᶠ (z : ℂ) in nhdsWithin z₀ {z₀}ᶜ, f z ≠ 0 := by
|
||||
|
||||
obtain ⟨n, h⟩ := hf
|
||||
let A := h.eventually_eq_zero_or_eventually_ne_zero
|
||||
|
||||
rw [eventually_nhdsWithin_iff]
|
||||
rw [eventually_nhds_iff]
|
||||
rcases A with h₁|h₂
|
||||
· rw [eventually_nhds_iff] at h₁
|
||||
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h₁
|
||||
left
|
||||
use N
|
||||
constructor
|
||||
· intro y h₁y h₂y
|
||||
let A := h₁N y h₁y
|
||||
simp at A
|
||||
rcases A with h₃|h₄
|
||||
· let B := h₃.1
|
||||
simp at h₂y
|
||||
let C := sub_eq_zero.1 B
|
||||
tauto
|
||||
· assumption
|
||||
· constructor
|
||||
· exact h₂N
|
||||
· exact h₃N
|
||||
· right
|
||||
rw [eventually_nhdsWithin_iff]
|
||||
rw [eventually_nhds_iff]
|
||||
rw [eventually_nhdsWithin_iff] at h₂
|
||||
rw [eventually_nhds_iff] at h₂
|
||||
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h₂
|
||||
use N
|
||||
constructor
|
||||
· intro y h₁y h₂y
|
||||
by_contra h
|
||||
let A := h₁N y h₁y h₂y
|
||||
rw [h] at A
|
||||
simp at A
|
||||
· constructor
|
||||
· exact h₂N
|
||||
· exact h₃N
|
||||
|
|
|
@ -1,57 +1,12 @@
|
|||
import Mathlib.Analysis.Analytic.Meromorphic
|
||||
import Nevanlinna.analyticAt
|
||||
import Nevanlinna.divisor
|
||||
import Nevanlinna.meromorphicAt
|
||||
|
||||
|
||||
open scoped Interval Topology
|
||||
open Real Filter MeasureTheory intervalIntegral
|
||||
|
||||
theorem MeromorphicAt.eventually_eq_zero_or_eventually_ne_zero
|
||||
{f : ℂ → ℂ}
|
||||
{z₀ : ℂ}
|
||||
(hf : MeromorphicAt f z₀) :
|
||||
(∀ᶠ (z : ℂ) in nhdsWithin z₀ {z₀}ᶜ, f z = 0) ∨ ∀ᶠ (z : ℂ) in nhdsWithin z₀ {z₀}ᶜ, f z ≠ 0 := by
|
||||
|
||||
obtain ⟨n, h⟩ := hf
|
||||
let A := h.eventually_eq_zero_or_eventually_ne_zero
|
||||
|
||||
rw [eventually_nhdsWithin_iff]
|
||||
rw [eventually_nhds_iff]
|
||||
rcases A with h₁|h₂
|
||||
· rw [eventually_nhds_iff] at h₁
|
||||
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h₁
|
||||
left
|
||||
use N
|
||||
constructor
|
||||
· intro y h₁y h₂y
|
||||
let A := h₁N y h₁y
|
||||
simp at A
|
||||
rcases A with h₃|h₄
|
||||
· let B := h₃.1
|
||||
simp at h₂y
|
||||
let C := sub_eq_zero.1 B
|
||||
tauto
|
||||
· assumption
|
||||
· constructor
|
||||
· exact h₂N
|
||||
· exact h₃N
|
||||
· right
|
||||
rw [eventually_nhdsWithin_iff]
|
||||
rw [eventually_nhds_iff]
|
||||
rw [eventually_nhdsWithin_iff] at h₂
|
||||
rw [eventually_nhds_iff] at h₂
|
||||
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h₂
|
||||
use N
|
||||
constructor
|
||||
· intro y h₁y h₂y
|
||||
by_contra h
|
||||
let A := h₁N y h₁y h₂y
|
||||
rw [h] at A
|
||||
simp at A
|
||||
· constructor
|
||||
· exact h₂N
|
||||
· exact h₃N
|
||||
|
||||
|
||||
noncomputable def MeromorphicOn.divisor
|
||||
{f : ℂ → ℂ}
|
||||
|
|
Loading…
Reference in New Issue