This commit is contained in:
Stefan Kebekus 2024-11-07 09:53:34 +01:00
parent a95c34fd05
commit e843786097
2 changed files with 42 additions and 48 deletions

View File

@ -11,5 +11,44 @@ theorem MeromorphicAt.eventually_eq_zero_or_eventually_ne_zero
{f : }
{z₀ : }
(hf : MeromorphicAt f z₀) :
(∀ᶠ (z : ) in nhds z₀, f z = 0) ∀ᶠ (z : ) in nhdsWithin z₀ {z₀}ᶜ, f z ≠ 0 := by
sorry
(∀ᶠ (z : ) in nhdsWithin z₀ {z₀}ᶜ, f z = 0) ∀ᶠ (z : ) in nhdsWithin z₀ {z₀}ᶜ, f z ≠ 0 := by
obtain ⟨n, h⟩ := hf
let A := h.eventually_eq_zero_or_eventually_ne_zero
rw [eventually_nhdsWithin_iff]
rw [eventually_nhds_iff]
rcases A with h₁|h₂
· rw [eventually_nhds_iff] at h₁
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h₁
left
use N
constructor
· intro y h₁y h₂y
let A := h₁N y h₁y
simp at A
rcases A with h₃|h₄
· let B := h₃.1
simp at h₂y
let C := sub_eq_zero.1 B
tauto
· assumption
· constructor
· exact h₂N
· exact h₃N
· right
rw [eventually_nhdsWithin_iff]
rw [eventually_nhds_iff]
rw [eventually_nhdsWithin_iff] at h₂
rw [eventually_nhds_iff] at h₂
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h₂
use N
constructor
· intro y h₁y h₂y
by_contra h
let A := h₁N y h₁y h₂y
rw [h] at A
simp at A
· constructor
· exact h₂N
· exact h₃N

View File

@ -1,57 +1,12 @@
import Mathlib.Analysis.Analytic.Meromorphic
import Nevanlinna.analyticAt
import Nevanlinna.divisor
import Nevanlinna.meromorphicAt
open scoped Interval Topology
open Real Filter MeasureTheory intervalIntegral
theorem MeromorphicAt.eventually_eq_zero_or_eventually_ne_zero
{f : }
{z₀ : }
(hf : MeromorphicAt f z₀) :
(∀ᶠ (z : ) in nhdsWithin z₀ {z₀}ᶜ, f z = 0) ∀ᶠ (z : ) in nhdsWithin z₀ {z₀}ᶜ, f z ≠ 0 := by
obtain ⟨n, h⟩ := hf
let A := h.eventually_eq_zero_or_eventually_ne_zero
rw [eventually_nhdsWithin_iff]
rw [eventually_nhds_iff]
rcases A with h₁|h₂
· rw [eventually_nhds_iff] at h₁
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h₁
left
use N
constructor
· intro y h₁y h₂y
let A := h₁N y h₁y
simp at A
rcases A with h₃|h₄
· let B := h₃.1
simp at h₂y
let C := sub_eq_zero.1 B
tauto
· assumption
· constructor
· exact h₂N
· exact h₃N
· right
rw [eventually_nhdsWithin_iff]
rw [eventually_nhds_iff]
rw [eventually_nhdsWithin_iff] at h₂
rw [eventually_nhds_iff] at h₂
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h₂
use N
constructor
· intro y h₁y h₂y
by_contra h
let A := h₁N y h₁y h₂y
rw [h] at A
simp at A
· constructor
· exact h₂N
· exact h₃N
noncomputable def MeromorphicOn.divisor
{f : }