Cleanup
This commit is contained in:
parent
a95c34fd05
commit
e843786097
|
@ -11,5 +11,44 @@ theorem MeromorphicAt.eventually_eq_zero_or_eventually_ne_zero
|
||||||
{f : ℂ → ℂ}
|
{f : ℂ → ℂ}
|
||||||
{z₀ : ℂ}
|
{z₀ : ℂ}
|
||||||
(hf : MeromorphicAt f z₀) :
|
(hf : MeromorphicAt f z₀) :
|
||||||
(∀ᶠ (z : ℂ) in nhds z₀, f z = 0) ∨ ∀ᶠ (z : ℂ) in nhdsWithin z₀ {z₀}ᶜ, f z ≠ 0 := by
|
(∀ᶠ (z : ℂ) in nhdsWithin z₀ {z₀}ᶜ, f z = 0) ∨ ∀ᶠ (z : ℂ) in nhdsWithin z₀ {z₀}ᶜ, f z ≠ 0 := by
|
||||||
sorry
|
|
||||||
|
obtain ⟨n, h⟩ := hf
|
||||||
|
let A := h.eventually_eq_zero_or_eventually_ne_zero
|
||||||
|
|
||||||
|
rw [eventually_nhdsWithin_iff]
|
||||||
|
rw [eventually_nhds_iff]
|
||||||
|
rcases A with h₁|h₂
|
||||||
|
· rw [eventually_nhds_iff] at h₁
|
||||||
|
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h₁
|
||||||
|
left
|
||||||
|
use N
|
||||||
|
constructor
|
||||||
|
· intro y h₁y h₂y
|
||||||
|
let A := h₁N y h₁y
|
||||||
|
simp at A
|
||||||
|
rcases A with h₃|h₄
|
||||||
|
· let B := h₃.1
|
||||||
|
simp at h₂y
|
||||||
|
let C := sub_eq_zero.1 B
|
||||||
|
tauto
|
||||||
|
· assumption
|
||||||
|
· constructor
|
||||||
|
· exact h₂N
|
||||||
|
· exact h₃N
|
||||||
|
· right
|
||||||
|
rw [eventually_nhdsWithin_iff]
|
||||||
|
rw [eventually_nhds_iff]
|
||||||
|
rw [eventually_nhdsWithin_iff] at h₂
|
||||||
|
rw [eventually_nhds_iff] at h₂
|
||||||
|
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h₂
|
||||||
|
use N
|
||||||
|
constructor
|
||||||
|
· intro y h₁y h₂y
|
||||||
|
by_contra h
|
||||||
|
let A := h₁N y h₁y h₂y
|
||||||
|
rw [h] at A
|
||||||
|
simp at A
|
||||||
|
· constructor
|
||||||
|
· exact h₂N
|
||||||
|
· exact h₃N
|
||||||
|
|
|
@ -1,57 +1,12 @@
|
||||||
import Mathlib.Analysis.Analytic.Meromorphic
|
import Mathlib.Analysis.Analytic.Meromorphic
|
||||||
import Nevanlinna.analyticAt
|
import Nevanlinna.analyticAt
|
||||||
import Nevanlinna.divisor
|
import Nevanlinna.divisor
|
||||||
|
import Nevanlinna.meromorphicAt
|
||||||
|
|
||||||
|
|
||||||
open scoped Interval Topology
|
open scoped Interval Topology
|
||||||
open Real Filter MeasureTheory intervalIntegral
|
open Real Filter MeasureTheory intervalIntegral
|
||||||
|
|
||||||
theorem MeromorphicAt.eventually_eq_zero_or_eventually_ne_zero
|
|
||||||
{f : ℂ → ℂ}
|
|
||||||
{z₀ : ℂ}
|
|
||||||
(hf : MeromorphicAt f z₀) :
|
|
||||||
(∀ᶠ (z : ℂ) in nhdsWithin z₀ {z₀}ᶜ, f z = 0) ∨ ∀ᶠ (z : ℂ) in nhdsWithin z₀ {z₀}ᶜ, f z ≠ 0 := by
|
|
||||||
|
|
||||||
obtain ⟨n, h⟩ := hf
|
|
||||||
let A := h.eventually_eq_zero_or_eventually_ne_zero
|
|
||||||
|
|
||||||
rw [eventually_nhdsWithin_iff]
|
|
||||||
rw [eventually_nhds_iff]
|
|
||||||
rcases A with h₁|h₂
|
|
||||||
· rw [eventually_nhds_iff] at h₁
|
|
||||||
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h₁
|
|
||||||
left
|
|
||||||
use N
|
|
||||||
constructor
|
|
||||||
· intro y h₁y h₂y
|
|
||||||
let A := h₁N y h₁y
|
|
||||||
simp at A
|
|
||||||
rcases A with h₃|h₄
|
|
||||||
· let B := h₃.1
|
|
||||||
simp at h₂y
|
|
||||||
let C := sub_eq_zero.1 B
|
|
||||||
tauto
|
|
||||||
· assumption
|
|
||||||
· constructor
|
|
||||||
· exact h₂N
|
|
||||||
· exact h₃N
|
|
||||||
· right
|
|
||||||
rw [eventually_nhdsWithin_iff]
|
|
||||||
rw [eventually_nhds_iff]
|
|
||||||
rw [eventually_nhdsWithin_iff] at h₂
|
|
||||||
rw [eventually_nhds_iff] at h₂
|
|
||||||
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h₂
|
|
||||||
use N
|
|
||||||
constructor
|
|
||||||
· intro y h₁y h₂y
|
|
||||||
by_contra h
|
|
||||||
let A := h₁N y h₁y h₂y
|
|
||||||
rw [h] at A
|
|
||||||
simp at A
|
|
||||||
· constructor
|
|
||||||
· exact h₂N
|
|
||||||
· exact h₃N
|
|
||||||
|
|
||||||
|
|
||||||
noncomputable def MeromorphicOn.divisor
|
noncomputable def MeromorphicOn.divisor
|
||||||
{f : ℂ → ℂ}
|
{f : ℂ → ℂ}
|
||||||
|
|
Loading…
Reference in New Issue