This commit is contained in:
Stefan Kebekus 2024-11-07 09:53:34 +01:00
parent a95c34fd05
commit e843786097
2 changed files with 42 additions and 48 deletions

View File

@ -11,5 +11,44 @@ theorem MeromorphicAt.eventually_eq_zero_or_eventually_ne_zero
{f : } {f : }
{z₀ : } {z₀ : }
(hf : MeromorphicAt f z₀) : (hf : MeromorphicAt f z₀) :
(∀ᶠ (z : ) in nhds z₀, f z = 0) ∀ᶠ (z : ) in nhdsWithin z₀ {z₀}ᶜ, f z ≠ 0 := by (∀ᶠ (z : ) in nhdsWithin z₀ {z₀}ᶜ, f z = 0) ∀ᶠ (z : ) in nhdsWithin z₀ {z₀}ᶜ, f z ≠ 0 := by
sorry
obtain ⟨n, h⟩ := hf
let A := h.eventually_eq_zero_or_eventually_ne_zero
rw [eventually_nhdsWithin_iff]
rw [eventually_nhds_iff]
rcases A with h₁|h₂
· rw [eventually_nhds_iff] at h₁
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h₁
left
use N
constructor
· intro y h₁y h₂y
let A := h₁N y h₁y
simp at A
rcases A with h₃|h₄
· let B := h₃.1
simp at h₂y
let C := sub_eq_zero.1 B
tauto
· assumption
· constructor
· exact h₂N
· exact h₃N
· right
rw [eventually_nhdsWithin_iff]
rw [eventually_nhds_iff]
rw [eventually_nhdsWithin_iff] at h₂
rw [eventually_nhds_iff] at h₂
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h₂
use N
constructor
· intro y h₁y h₂y
by_contra h
let A := h₁N y h₁y h₂y
rw [h] at A
simp at A
· constructor
· exact h₂N
· exact h₃N

View File

@ -1,57 +1,12 @@
import Mathlib.Analysis.Analytic.Meromorphic import Mathlib.Analysis.Analytic.Meromorphic
import Nevanlinna.analyticAt import Nevanlinna.analyticAt
import Nevanlinna.divisor import Nevanlinna.divisor
import Nevanlinna.meromorphicAt
open scoped Interval Topology open scoped Interval Topology
open Real Filter MeasureTheory intervalIntegral open Real Filter MeasureTheory intervalIntegral
theorem MeromorphicAt.eventually_eq_zero_or_eventually_ne_zero
{f : }
{z₀ : }
(hf : MeromorphicAt f z₀) :
(∀ᶠ (z : ) in nhdsWithin z₀ {z₀}ᶜ, f z = 0) ∀ᶠ (z : ) in nhdsWithin z₀ {z₀}ᶜ, f z ≠ 0 := by
obtain ⟨n, h⟩ := hf
let A := h.eventually_eq_zero_or_eventually_ne_zero
rw [eventually_nhdsWithin_iff]
rw [eventually_nhds_iff]
rcases A with h₁|h₂
· rw [eventually_nhds_iff] at h₁
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h₁
left
use N
constructor
· intro y h₁y h₂y
let A := h₁N y h₁y
simp at A
rcases A with h₃|h₄
· let B := h₃.1
simp at h₂y
let C := sub_eq_zero.1 B
tauto
· assumption
· constructor
· exact h₂N
· exact h₃N
· right
rw [eventually_nhdsWithin_iff]
rw [eventually_nhds_iff]
rw [eventually_nhdsWithin_iff] at h₂
rw [eventually_nhds_iff] at h₂
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h₂
use N
constructor
· intro y h₁y h₂y
by_contra h
let A := h₁N y h₁y h₂y
rw [h] at A
simp at A
· constructor
· exact h₂N
· exact h₃N
noncomputable def MeromorphicOn.divisor noncomputable def MeromorphicOn.divisor
{f : } {f : }