split off file
This commit is contained in:
parent
e1eb1463e8
commit
e76e9abaf3
|
@ -0,0 +1,325 @@
|
||||||
|
import Mathlib.Analysis.Complex.Basic
|
||||||
|
import Mathlib.Analysis.Complex.TaylorSeries
|
||||||
|
import Mathlib.Analysis.Calculus.LineDeriv.Basic
|
||||||
|
import Mathlib.Analysis.Calculus.ContDiff.Defs
|
||||||
|
import Mathlib.Analysis.Calculus.FDeriv.Basic
|
||||||
|
import Mathlib.Analysis.Calculus.FDeriv.Symmetric
|
||||||
|
import Mathlib.Analysis.RCLike.Basic
|
||||||
|
import Mathlib.Analysis.SpecialFunctions.Complex.LogDeriv
|
||||||
|
import Mathlib.Data.Complex.Module
|
||||||
|
import Mathlib.Data.Complex.Order
|
||||||
|
import Mathlib.Data.Complex.Exponential
|
||||||
|
import Mathlib.Data.Fin.Tuple.Basic
|
||||||
|
import Mathlib.Topology.Algebra.InfiniteSum.Module
|
||||||
|
import Mathlib.Topology.Instances.RealVectorSpace
|
||||||
|
import Nevanlinna.cauchyRiemann
|
||||||
|
import Nevanlinna.laplace
|
||||||
|
import Nevanlinna.complexHarmonic
|
||||||
|
|
||||||
|
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F]
|
||||||
|
variable {F₁ : Type*} [NormedAddCommGroup F₁] [NormedSpace ℂ F₁] [CompleteSpace F₁]
|
||||||
|
variable {G : Type*} [NormedAddCommGroup G] [NormedSpace ℝ G]
|
||||||
|
variable {G₁ : Type*} [NormedAddCommGroup G₁] [NormedSpace ℂ G₁] [CompleteSpace G₁]
|
||||||
|
|
||||||
|
|
||||||
|
theorem holomorphic_is_harmonic {f : ℂ → F₁} (h : Differentiable ℂ f) :
|
||||||
|
Harmonic f := by
|
||||||
|
|
||||||
|
-- f is real C²
|
||||||
|
have f_is_real_C2 : ContDiff ℝ 2 f :=
|
||||||
|
ContDiff.restrict_scalars ℝ (Differentiable.contDiff h)
|
||||||
|
|
||||||
|
have fI_is_real_differentiable : Differentiable ℝ (partialDeriv ℝ 1 f) := by
|
||||||
|
exact (partialDeriv_contDiff ℝ f_is_real_C2 1).differentiable (Submonoid.oneLE.proof_2 ℕ∞)
|
||||||
|
|
||||||
|
constructor
|
||||||
|
· -- f is two times real continuously differentiable
|
||||||
|
exact f_is_real_C2
|
||||||
|
|
||||||
|
· -- Laplace of f is zero
|
||||||
|
unfold Complex.laplace
|
||||||
|
rw [CauchyRiemann₄ h]
|
||||||
|
|
||||||
|
-- This lemma says that partial derivatives commute with complex scalar
|
||||||
|
-- multiplication. This is a consequence of partialDeriv_compContLin once we
|
||||||
|
-- note that complex scalar multiplication is continuous ℝ-linear.
|
||||||
|
have : ∀ v, ∀ s : ℂ, ∀ g : ℂ → F₁, Differentiable ℝ g → partialDeriv ℝ v (s • g) = s • (partialDeriv ℝ v g) := by
|
||||||
|
intro v s g hg
|
||||||
|
|
||||||
|
-- Present scalar multiplication as a continuous ℝ-linear map. This is
|
||||||
|
-- horrible, there must be better ways to do that.
|
||||||
|
let sMuls : F₁ →L[ℝ] F₁ :=
|
||||||
|
{
|
||||||
|
toFun := fun x ↦ s • x
|
||||||
|
map_add' := by exact fun x y => DistribSMul.smul_add s x y
|
||||||
|
map_smul' := by exact fun m x => (smul_comm ((RingHom.id ℝ) m) s x).symm
|
||||||
|
cont := continuous_const_smul s
|
||||||
|
}
|
||||||
|
|
||||||
|
-- Bring the goal into a form that is recognized by
|
||||||
|
-- partialDeriv_compContLin.
|
||||||
|
have : s • g = sMuls ∘ g := by rfl
|
||||||
|
rw [this]
|
||||||
|
|
||||||
|
rw [partialDeriv_compContLin ℝ hg]
|
||||||
|
rfl
|
||||||
|
|
||||||
|
rw [this]
|
||||||
|
rw [partialDeriv_comm f_is_real_C2 Complex.I 1]
|
||||||
|
rw [CauchyRiemann₄ h]
|
||||||
|
rw [this]
|
||||||
|
rw [← smul_assoc]
|
||||||
|
simp
|
||||||
|
|
||||||
|
-- Subgoals coming from the application of 'this'
|
||||||
|
-- Differentiable ℝ (Real.partialDeriv 1 f)
|
||||||
|
exact fI_is_real_differentiable
|
||||||
|
-- Differentiable ℝ (Real.partialDeriv 1 f)
|
||||||
|
exact fI_is_real_differentiable
|
||||||
|
|
||||||
|
|
||||||
|
theorem holomorphicOn_is_harmonicOn {f : ℂ → F₁} {s : Set ℂ} (hs : IsOpen s) (h : DifferentiableOn ℂ f s) :
|
||||||
|
HarmonicOn f s := by
|
||||||
|
|
||||||
|
-- f is real C²
|
||||||
|
have f_is_real_C2 : ContDiffOn ℝ 2 f s :=
|
||||||
|
ContDiffOn.restrict_scalars ℝ (DifferentiableOn.contDiffOn h hs)
|
||||||
|
|
||||||
|
constructor
|
||||||
|
· -- f is two times real continuously differentiable
|
||||||
|
exact f_is_real_C2
|
||||||
|
|
||||||
|
· -- Laplace of f is zero
|
||||||
|
unfold Complex.laplace
|
||||||
|
intro z hz
|
||||||
|
simp
|
||||||
|
have : partialDeriv ℝ Complex.I f =ᶠ[nhds z] Complex.I • partialDeriv ℝ 1 f := by
|
||||||
|
unfold Filter.EventuallyEq
|
||||||
|
unfold Filter.Eventually
|
||||||
|
simp
|
||||||
|
refine mem_nhds_iff.mpr ?_
|
||||||
|
use s
|
||||||
|
constructor
|
||||||
|
· intro x hx
|
||||||
|
simp
|
||||||
|
apply CauchyRiemann₅
|
||||||
|
apply DifferentiableOn.differentiableAt h
|
||||||
|
exact IsOpen.mem_nhds hs hx
|
||||||
|
· constructor
|
||||||
|
· exact hs
|
||||||
|
· exact hz
|
||||||
|
rw [partialDeriv_eventuallyEq ℝ this Complex.I]
|
||||||
|
rw [partialDeriv_smul'₂]
|
||||||
|
|
||||||
|
simp
|
||||||
|
rw [partialDeriv_commOn hs f_is_real_C2 Complex.I 1 z hz]
|
||||||
|
|
||||||
|
have : Complex.I • partialDeriv ℝ 1 (partialDeriv ℝ Complex.I f) z = Complex.I • (partialDeriv ℝ 1 (partialDeriv ℝ Complex.I f) z) := by
|
||||||
|
rfl
|
||||||
|
rw [this]
|
||||||
|
have : partialDeriv ℝ Complex.I f =ᶠ[nhds z] Complex.I • partialDeriv ℝ 1 f := by
|
||||||
|
unfold Filter.EventuallyEq
|
||||||
|
unfold Filter.Eventually
|
||||||
|
simp
|
||||||
|
refine mem_nhds_iff.mpr ?_
|
||||||
|
use s
|
||||||
|
constructor
|
||||||
|
· intro x hx
|
||||||
|
simp
|
||||||
|
apply CauchyRiemann₅
|
||||||
|
apply DifferentiableOn.differentiableAt h
|
||||||
|
exact IsOpen.mem_nhds hs hx
|
||||||
|
· constructor
|
||||||
|
· exact hs
|
||||||
|
· exact hz
|
||||||
|
rw [partialDeriv_eventuallyEq ℝ this 1]
|
||||||
|
rw [partialDeriv_smul'₂]
|
||||||
|
simp
|
||||||
|
rw [← smul_assoc]
|
||||||
|
simp
|
||||||
|
|
||||||
|
|
||||||
|
theorem re_of_holomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f) :
|
||||||
|
Harmonic (Complex.reCLM ∘ f) := by
|
||||||
|
apply harmonic_comp_CLM_is_harmonic
|
||||||
|
exact holomorphic_is_harmonic h
|
||||||
|
|
||||||
|
|
||||||
|
theorem im_of_holomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f) :
|
||||||
|
Harmonic (Complex.imCLM ∘ f) := by
|
||||||
|
apply harmonic_comp_CLM_is_harmonic
|
||||||
|
exact holomorphic_is_harmonic h
|
||||||
|
|
||||||
|
|
||||||
|
theorem antiholomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f) :
|
||||||
|
Harmonic (Complex.conjCLE ∘ f) := by
|
||||||
|
apply harmonic_iff_comp_CLE_is_harmonic.1
|
||||||
|
exact holomorphic_is_harmonic h
|
||||||
|
|
||||||
|
|
||||||
|
theorem log_normSq_of_holomorphicOn_is_harmonicOn'
|
||||||
|
{f : ℂ → ℂ}
|
||||||
|
{s : Set ℂ}
|
||||||
|
(hs : IsOpen s)
|
||||||
|
(h₁ : DifferentiableOn ℂ f s)
|
||||||
|
(h₂ : ∀ z ∈ s, f z ≠ 0)
|
||||||
|
(h₃ : ∀ z ∈ s, f z ∈ Complex.slitPlane) :
|
||||||
|
HarmonicOn (Real.log ∘ Complex.normSq ∘ f) s := by
|
||||||
|
|
||||||
|
suffices hyp : HarmonicOn (⇑Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f) s from
|
||||||
|
(harmonicOn_comp_CLM_is_harmonicOn hs hyp : HarmonicOn (Complex.reCLM ∘ Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f) s)
|
||||||
|
|
||||||
|
suffices hyp : HarmonicOn (Complex.log ∘ (((starRingEnd ℂ) ∘ f) * f)) s from by
|
||||||
|
have : Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f = Complex.log ∘ (((starRingEnd ℂ) ∘ f) * f) := by
|
||||||
|
funext z
|
||||||
|
simp
|
||||||
|
rw [Complex.ofReal_log (Complex.normSq_nonneg (f z))]
|
||||||
|
rw [Complex.normSq_eq_conj_mul_self]
|
||||||
|
rw [this]
|
||||||
|
exact hyp
|
||||||
|
|
||||||
|
|
||||||
|
-- Suffices to show Harmonic (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f + Complex.log ∘ f)
|
||||||
|
-- THIS IS WHERE WE USE h₃
|
||||||
|
have : ∀ z ∈ s, (Complex.log ∘ (⇑(starRingEnd ℂ) ∘ f * f)) z = (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f + Complex.log ∘ f) z := by
|
||||||
|
intro z hz
|
||||||
|
unfold Function.comp
|
||||||
|
simp
|
||||||
|
rw [Complex.log_mul_eq_add_log_iff]
|
||||||
|
|
||||||
|
have : Complex.arg ((starRingEnd ℂ) (f z)) = - Complex.arg (f z) := by
|
||||||
|
rw [Complex.arg_conj]
|
||||||
|
have : ¬ Complex.arg (f z) = Real.pi := by
|
||||||
|
exact Complex.slitPlane_arg_ne_pi (h₃ z hz)
|
||||||
|
simp
|
||||||
|
tauto
|
||||||
|
rw [this]
|
||||||
|
simp
|
||||||
|
constructor
|
||||||
|
· exact Real.pi_pos
|
||||||
|
· exact Real.pi_nonneg
|
||||||
|
exact (AddEquivClass.map_ne_zero_iff starRingAut).mpr (h₂ z hz)
|
||||||
|
exact h₂ z hz
|
||||||
|
|
||||||
|
rw [HarmonicOn_congr hs this]
|
||||||
|
simp
|
||||||
|
|
||||||
|
apply harmonicOn_add_harmonicOn_is_harmonicOn hs
|
||||||
|
|
||||||
|
have : (fun x => Complex.log ((starRingEnd ℂ) (f x))) = (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f) := by
|
||||||
|
rfl
|
||||||
|
rw [this]
|
||||||
|
|
||||||
|
-- HarmonicOn (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f) s
|
||||||
|
have : ∀ z ∈ s, (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f) z = (Complex.conjCLE ∘ Complex.log ∘ f) z := by
|
||||||
|
intro z hz
|
||||||
|
unfold Function.comp
|
||||||
|
rw [Complex.log_conj]
|
||||||
|
rfl
|
||||||
|
exact Complex.slitPlane_arg_ne_pi (h₃ z hz)
|
||||||
|
rw [HarmonicOn_congr hs this]
|
||||||
|
|
||||||
|
rw [← harmonicOn_iff_comp_CLE_is_harmonicOn]
|
||||||
|
|
||||||
|
apply holomorphicOn_is_harmonicOn
|
||||||
|
exact hs
|
||||||
|
|
||||||
|
intro z hz
|
||||||
|
apply DifferentiableAt.differentiableWithinAt
|
||||||
|
apply DifferentiableAt.comp
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
exact Complex.differentiableAt_log (h₃ z hz)
|
||||||
|
apply DifferentiableOn.differentiableAt h₁ -- (h₁ z hz)
|
||||||
|
exact IsOpen.mem_nhds hs hz
|
||||||
|
exact hs
|
||||||
|
|
||||||
|
-- HarmonicOn (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f) s
|
||||||
|
apply holomorphicOn_is_harmonicOn hs
|
||||||
|
exact DifferentiableOn.clog h₁ h₃
|
||||||
|
|
||||||
|
|
||||||
|
theorem log_normSq_of_holomorphic_is_harmonic
|
||||||
|
{f : ℂ → ℂ}
|
||||||
|
(h₁ : Differentiable ℂ f)
|
||||||
|
(h₂ : ∀ z, f z ≠ 0)
|
||||||
|
(h₃ : ∀ z, f z ∈ Complex.slitPlane) :
|
||||||
|
Harmonic (Real.log ∘ Complex.normSq ∘ f) := by
|
||||||
|
|
||||||
|
suffices hyp : Harmonic (⇑Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f) from
|
||||||
|
(harmonic_comp_CLM_is_harmonic hyp : Harmonic (Complex.reCLM ∘ Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f))
|
||||||
|
|
||||||
|
suffices hyp : Harmonic (Complex.log ∘ (((starRingEnd ℂ) ∘ f) * f)) from by
|
||||||
|
have : Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f = Complex.log ∘ (((starRingEnd ℂ) ∘ f) * f) := by
|
||||||
|
funext z
|
||||||
|
simp
|
||||||
|
rw [Complex.ofReal_log (Complex.normSq_nonneg (f z))]
|
||||||
|
rw [Complex.normSq_eq_conj_mul_self]
|
||||||
|
rw [this]
|
||||||
|
exact hyp
|
||||||
|
|
||||||
|
|
||||||
|
-- Suffices to show Harmonic (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f + Complex.log ∘ f)
|
||||||
|
-- THIS IS WHERE WE USE h₃
|
||||||
|
have : Complex.log ∘ (⇑(starRingEnd ℂ) ∘ f * f) = Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f + Complex.log ∘ f := by
|
||||||
|
unfold Function.comp
|
||||||
|
funext z
|
||||||
|
simp
|
||||||
|
rw [Complex.log_mul_eq_add_log_iff]
|
||||||
|
|
||||||
|
have : Complex.arg ((starRingEnd ℂ) (f z)) = - Complex.arg (f z) := by
|
||||||
|
rw [Complex.arg_conj]
|
||||||
|
have : ¬ Complex.arg (f z) = Real.pi := by
|
||||||
|
exact Complex.slitPlane_arg_ne_pi (h₃ z)
|
||||||
|
simp
|
||||||
|
tauto
|
||||||
|
rw [this]
|
||||||
|
simp
|
||||||
|
constructor
|
||||||
|
· exact Real.pi_pos
|
||||||
|
· exact Real.pi_nonneg
|
||||||
|
exact (AddEquivClass.map_ne_zero_iff starRingAut).mpr (h₂ z)
|
||||||
|
exact h₂ z
|
||||||
|
rw [this]
|
||||||
|
|
||||||
|
apply harmonic_add_harmonic_is_harmonic
|
||||||
|
have : Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f = Complex.conjCLE ∘ Complex.log ∘ f := by
|
||||||
|
funext z
|
||||||
|
unfold Function.comp
|
||||||
|
rw [Complex.log_conj]
|
||||||
|
rfl
|
||||||
|
exact Complex.slitPlane_arg_ne_pi (h₃ z)
|
||||||
|
rw [this]
|
||||||
|
rw [← harmonic_iff_comp_CLE_is_harmonic]
|
||||||
|
|
||||||
|
repeat
|
||||||
|
apply holomorphic_is_harmonic
|
||||||
|
intro z
|
||||||
|
apply DifferentiableAt.comp
|
||||||
|
exact Complex.differentiableAt_log (h₃ z)
|
||||||
|
exact h₁ z
|
||||||
|
|
||||||
|
|
||||||
|
theorem logabs_of_holomorphic_is_harmonic
|
||||||
|
{f : ℂ → ℂ}
|
||||||
|
(h₁ : Differentiable ℂ f)
|
||||||
|
(h₂ : ∀ z, f z ≠ 0)
|
||||||
|
(h₃ : ∀ z, f z ∈ Complex.slitPlane) :
|
||||||
|
Harmonic (fun z ↦ Real.log ‖f z‖) := by
|
||||||
|
|
||||||
|
-- Suffices: Harmonic (2⁻¹ • Real.log ∘ ⇑Complex.normSq ∘ f)
|
||||||
|
have : (fun z ↦ Real.log ‖f z‖) = (2 : ℝ)⁻¹ • (Real.log ∘ Complex.normSq ∘ f) := by
|
||||||
|
funext z
|
||||||
|
simp
|
||||||
|
unfold Complex.abs
|
||||||
|
simp
|
||||||
|
rw [Real.log_sqrt]
|
||||||
|
rw [div_eq_inv_mul (Real.log (Complex.normSq (f z))) 2]
|
||||||
|
exact Complex.normSq_nonneg (f z)
|
||||||
|
rw [this]
|
||||||
|
|
||||||
|
-- Suffices: Harmonic (Real.log ∘ ⇑Complex.normSq ∘ f)
|
||||||
|
apply (harmonic_iff_smul_const_is_harmonic (inv_ne_zero two_ne_zero)).1
|
||||||
|
|
||||||
|
exact log_normSq_of_holomorphic_is_harmonic h₁ h₂ h₃
|
|
@ -189,306 +189,3 @@ theorem harmonicOn_iff_comp_CLE_is_harmonicOn {f : ℂ → F₁} {s : Set ℂ} {
|
||||||
simp
|
simp
|
||||||
nth_rewrite 2 [this]
|
nth_rewrite 2 [this]
|
||||||
exact harmonicOn_comp_CLM_is_harmonicOn hs
|
exact harmonicOn_comp_CLM_is_harmonicOn hs
|
||||||
|
|
||||||
|
|
||||||
theorem holomorphic_is_harmonic {f : ℂ → F₁} (h : Differentiable ℂ f) :
|
|
||||||
Harmonic f := by
|
|
||||||
|
|
||||||
-- f is real C²
|
|
||||||
have f_is_real_C2 : ContDiff ℝ 2 f :=
|
|
||||||
ContDiff.restrict_scalars ℝ (Differentiable.contDiff h)
|
|
||||||
|
|
||||||
have fI_is_real_differentiable : Differentiable ℝ (partialDeriv ℝ 1 f) := by
|
|
||||||
exact (partialDeriv_contDiff ℝ f_is_real_C2 1).differentiable (Submonoid.oneLE.proof_2 ℕ∞)
|
|
||||||
|
|
||||||
constructor
|
|
||||||
· -- f is two times real continuously differentiable
|
|
||||||
exact f_is_real_C2
|
|
||||||
|
|
||||||
· -- Laplace of f is zero
|
|
||||||
unfold Complex.laplace
|
|
||||||
rw [CauchyRiemann₄ h]
|
|
||||||
|
|
||||||
-- This lemma says that partial derivatives commute with complex scalar
|
|
||||||
-- multiplication. This is a consequence of partialDeriv_compContLin once we
|
|
||||||
-- note that complex scalar multiplication is continuous ℝ-linear.
|
|
||||||
have : ∀ v, ∀ s : ℂ, ∀ g : ℂ → F₁, Differentiable ℝ g → partialDeriv ℝ v (s • g) = s • (partialDeriv ℝ v g) := by
|
|
||||||
intro v s g hg
|
|
||||||
|
|
||||||
-- Present scalar multiplication as a continuous ℝ-linear map. This is
|
|
||||||
-- horrible, there must be better ways to do that.
|
|
||||||
let sMuls : F₁ →L[ℝ] F₁ :=
|
|
||||||
{
|
|
||||||
toFun := fun x ↦ s • x
|
|
||||||
map_add' := by exact fun x y => DistribSMul.smul_add s x y
|
|
||||||
map_smul' := by exact fun m x => (smul_comm ((RingHom.id ℝ) m) s x).symm
|
|
||||||
cont := continuous_const_smul s
|
|
||||||
}
|
|
||||||
|
|
||||||
-- Bring the goal into a form that is recognized by
|
|
||||||
-- partialDeriv_compContLin.
|
|
||||||
have : s • g = sMuls ∘ g := by rfl
|
|
||||||
rw [this]
|
|
||||||
|
|
||||||
rw [partialDeriv_compContLin ℝ hg]
|
|
||||||
rfl
|
|
||||||
|
|
||||||
rw [this]
|
|
||||||
rw [partialDeriv_comm f_is_real_C2 Complex.I 1]
|
|
||||||
rw [CauchyRiemann₄ h]
|
|
||||||
rw [this]
|
|
||||||
rw [← smul_assoc]
|
|
||||||
simp
|
|
||||||
|
|
||||||
-- Subgoals coming from the application of 'this'
|
|
||||||
-- Differentiable ℝ (Real.partialDeriv 1 f)
|
|
||||||
exact fI_is_real_differentiable
|
|
||||||
-- Differentiable ℝ (Real.partialDeriv 1 f)
|
|
||||||
exact fI_is_real_differentiable
|
|
||||||
|
|
||||||
|
|
||||||
theorem holomorphicOn_is_harmonicOn {f : ℂ → F₁} {s : Set ℂ} (hs : IsOpen s) (h : DifferentiableOn ℂ f s) :
|
|
||||||
HarmonicOn f s := by
|
|
||||||
|
|
||||||
-- f is real C²
|
|
||||||
have f_is_real_C2 : ContDiffOn ℝ 2 f s :=
|
|
||||||
ContDiffOn.restrict_scalars ℝ (DifferentiableOn.contDiffOn h hs)
|
|
||||||
|
|
||||||
constructor
|
|
||||||
· -- f is two times real continuously differentiable
|
|
||||||
exact f_is_real_C2
|
|
||||||
|
|
||||||
· -- Laplace of f is zero
|
|
||||||
unfold Complex.laplace
|
|
||||||
intro z hz
|
|
||||||
simp
|
|
||||||
have : partialDeriv ℝ Complex.I f =ᶠ[nhds z] Complex.I • partialDeriv ℝ 1 f := by
|
|
||||||
unfold Filter.EventuallyEq
|
|
||||||
unfold Filter.Eventually
|
|
||||||
simp
|
|
||||||
refine mem_nhds_iff.mpr ?_
|
|
||||||
use s
|
|
||||||
constructor
|
|
||||||
· intro x hx
|
|
||||||
simp
|
|
||||||
apply CauchyRiemann₅
|
|
||||||
apply DifferentiableOn.differentiableAt h
|
|
||||||
exact IsOpen.mem_nhds hs hx
|
|
||||||
· constructor
|
|
||||||
· exact hs
|
|
||||||
· exact hz
|
|
||||||
rw [partialDeriv_eventuallyEq ℝ this Complex.I]
|
|
||||||
rw [partialDeriv_smul'₂]
|
|
||||||
|
|
||||||
simp
|
|
||||||
rw [partialDeriv_commOn hs f_is_real_C2 Complex.I 1 z hz]
|
|
||||||
|
|
||||||
have : Complex.I • partialDeriv ℝ 1 (partialDeriv ℝ Complex.I f) z = Complex.I • (partialDeriv ℝ 1 (partialDeriv ℝ Complex.I f) z) := by
|
|
||||||
rfl
|
|
||||||
rw [this]
|
|
||||||
have : partialDeriv ℝ Complex.I f =ᶠ[nhds z] Complex.I • partialDeriv ℝ 1 f := by
|
|
||||||
unfold Filter.EventuallyEq
|
|
||||||
unfold Filter.Eventually
|
|
||||||
simp
|
|
||||||
refine mem_nhds_iff.mpr ?_
|
|
||||||
use s
|
|
||||||
constructor
|
|
||||||
· intro x hx
|
|
||||||
simp
|
|
||||||
apply CauchyRiemann₅
|
|
||||||
apply DifferentiableOn.differentiableAt h
|
|
||||||
exact IsOpen.mem_nhds hs hx
|
|
||||||
· constructor
|
|
||||||
· exact hs
|
|
||||||
· exact hz
|
|
||||||
rw [partialDeriv_eventuallyEq ℝ this 1]
|
|
||||||
rw [partialDeriv_smul'₂]
|
|
||||||
simp
|
|
||||||
rw [← smul_assoc]
|
|
||||||
simp
|
|
||||||
|
|
||||||
|
|
||||||
theorem re_of_holomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f) :
|
|
||||||
Harmonic (Complex.reCLM ∘ f) := by
|
|
||||||
apply harmonic_comp_CLM_is_harmonic
|
|
||||||
exact holomorphic_is_harmonic h
|
|
||||||
|
|
||||||
|
|
||||||
theorem im_of_holomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f) :
|
|
||||||
Harmonic (Complex.imCLM ∘ f) := by
|
|
||||||
apply harmonic_comp_CLM_is_harmonic
|
|
||||||
exact holomorphic_is_harmonic h
|
|
||||||
|
|
||||||
|
|
||||||
theorem antiholomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f) :
|
|
||||||
Harmonic (Complex.conjCLE ∘ f) := by
|
|
||||||
apply harmonic_iff_comp_CLE_is_harmonic.1
|
|
||||||
exact holomorphic_is_harmonic h
|
|
||||||
|
|
||||||
|
|
||||||
theorem log_normSq_of_holomorphicOn_is_harmonicOn'
|
|
||||||
{f : ℂ → ℂ}
|
|
||||||
{s : Set ℂ}
|
|
||||||
(hs : IsOpen s)
|
|
||||||
(h₁ : DifferentiableOn ℂ f s)
|
|
||||||
(h₂ : ∀ z ∈ s, f z ≠ 0)
|
|
||||||
(h₃ : ∀ z ∈ s, f z ∈ Complex.slitPlane) :
|
|
||||||
HarmonicOn (Real.log ∘ Complex.normSq ∘ f) s := by
|
|
||||||
|
|
||||||
suffices hyp : HarmonicOn (⇑Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f) s from
|
|
||||||
(harmonicOn_comp_CLM_is_harmonicOn hs hyp : HarmonicOn (Complex.reCLM ∘ Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f) s)
|
|
||||||
|
|
||||||
suffices hyp : HarmonicOn (Complex.log ∘ (((starRingEnd ℂ) ∘ f) * f)) s from by
|
|
||||||
have : Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f = Complex.log ∘ (((starRingEnd ℂ) ∘ f) * f) := by
|
|
||||||
funext z
|
|
||||||
simp
|
|
||||||
rw [Complex.ofReal_log (Complex.normSq_nonneg (f z))]
|
|
||||||
rw [Complex.normSq_eq_conj_mul_self]
|
|
||||||
rw [this]
|
|
||||||
exact hyp
|
|
||||||
|
|
||||||
|
|
||||||
-- Suffices to show Harmonic (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f + Complex.log ∘ f)
|
|
||||||
-- THIS IS WHERE WE USE h₃
|
|
||||||
have : ∀ z ∈ s, (Complex.log ∘ (⇑(starRingEnd ℂ) ∘ f * f)) z = (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f + Complex.log ∘ f) z := by
|
|
||||||
intro z hz
|
|
||||||
unfold Function.comp
|
|
||||||
simp
|
|
||||||
rw [Complex.log_mul_eq_add_log_iff]
|
|
||||||
|
|
||||||
have : Complex.arg ((starRingEnd ℂ) (f z)) = - Complex.arg (f z) := by
|
|
||||||
rw [Complex.arg_conj]
|
|
||||||
have : ¬ Complex.arg (f z) = Real.pi := by
|
|
||||||
exact Complex.slitPlane_arg_ne_pi (h₃ z hz)
|
|
||||||
simp
|
|
||||||
tauto
|
|
||||||
rw [this]
|
|
||||||
simp
|
|
||||||
constructor
|
|
||||||
· exact Real.pi_pos
|
|
||||||
· exact Real.pi_nonneg
|
|
||||||
exact (AddEquivClass.map_ne_zero_iff starRingAut).mpr (h₂ z hz)
|
|
||||||
exact h₂ z hz
|
|
||||||
|
|
||||||
rw [HarmonicOn_congr hs this]
|
|
||||||
simp
|
|
||||||
|
|
||||||
apply harmonicOn_add_harmonicOn_is_harmonicOn hs
|
|
||||||
|
|
||||||
have : (fun x => Complex.log ((starRingEnd ℂ) (f x))) = (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f) := by
|
|
||||||
rfl
|
|
||||||
rw [this]
|
|
||||||
|
|
||||||
-- HarmonicOn (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f) s
|
|
||||||
have : ∀ z ∈ s, (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f) z = (Complex.conjCLE ∘ Complex.log ∘ f) z := by
|
|
||||||
intro z hz
|
|
||||||
unfold Function.comp
|
|
||||||
rw [Complex.log_conj]
|
|
||||||
rfl
|
|
||||||
exact Complex.slitPlane_arg_ne_pi (h₃ z hz)
|
|
||||||
rw [HarmonicOn_congr hs this]
|
|
||||||
|
|
||||||
rw [← harmonicOn_iff_comp_CLE_is_harmonicOn]
|
|
||||||
|
|
||||||
apply holomorphicOn_is_harmonicOn
|
|
||||||
exact hs
|
|
||||||
|
|
||||||
intro z hz
|
|
||||||
apply DifferentiableAt.differentiableWithinAt
|
|
||||||
apply DifferentiableAt.comp
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
exact Complex.differentiableAt_log (h₃ z hz)
|
|
||||||
apply DifferentiableOn.differentiableAt h₁ -- (h₁ z hz)
|
|
||||||
exact IsOpen.mem_nhds hs hz
|
|
||||||
exact hs
|
|
||||||
|
|
||||||
-- HarmonicOn (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f) s
|
|
||||||
apply holomorphicOn_is_harmonicOn hs
|
|
||||||
exact DifferentiableOn.clog h₁ h₃
|
|
||||||
|
|
||||||
|
|
||||||
theorem log_normSq_of_holomorphic_is_harmonic
|
|
||||||
{f : ℂ → ℂ}
|
|
||||||
(h₁ : Differentiable ℂ f)
|
|
||||||
(h₂ : ∀ z, f z ≠ 0)
|
|
||||||
(h₃ : ∀ z, f z ∈ Complex.slitPlane) :
|
|
||||||
Harmonic (Real.log ∘ Complex.normSq ∘ f) := by
|
|
||||||
|
|
||||||
suffices hyp : Harmonic (⇑Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f) from
|
|
||||||
(harmonic_comp_CLM_is_harmonic hyp : Harmonic (Complex.reCLM ∘ Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f))
|
|
||||||
|
|
||||||
suffices hyp : Harmonic (Complex.log ∘ (((starRingEnd ℂ) ∘ f) * f)) from by
|
|
||||||
have : Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f = Complex.log ∘ (((starRingEnd ℂ) ∘ f) * f) := by
|
|
||||||
funext z
|
|
||||||
simp
|
|
||||||
rw [Complex.ofReal_log (Complex.normSq_nonneg (f z))]
|
|
||||||
rw [Complex.normSq_eq_conj_mul_self]
|
|
||||||
rw [this]
|
|
||||||
exact hyp
|
|
||||||
|
|
||||||
|
|
||||||
-- Suffices to show Harmonic (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f + Complex.log ∘ f)
|
|
||||||
-- THIS IS WHERE WE USE h₃
|
|
||||||
have : Complex.log ∘ (⇑(starRingEnd ℂ) ∘ f * f) = Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f + Complex.log ∘ f := by
|
|
||||||
unfold Function.comp
|
|
||||||
funext z
|
|
||||||
simp
|
|
||||||
rw [Complex.log_mul_eq_add_log_iff]
|
|
||||||
|
|
||||||
have : Complex.arg ((starRingEnd ℂ) (f z)) = - Complex.arg (f z) := by
|
|
||||||
rw [Complex.arg_conj]
|
|
||||||
have : ¬ Complex.arg (f z) = Real.pi := by
|
|
||||||
exact Complex.slitPlane_arg_ne_pi (h₃ z)
|
|
||||||
simp
|
|
||||||
tauto
|
|
||||||
rw [this]
|
|
||||||
simp
|
|
||||||
constructor
|
|
||||||
· exact Real.pi_pos
|
|
||||||
· exact Real.pi_nonneg
|
|
||||||
exact (AddEquivClass.map_ne_zero_iff starRingAut).mpr (h₂ z)
|
|
||||||
exact h₂ z
|
|
||||||
rw [this]
|
|
||||||
|
|
||||||
apply harmonic_add_harmonic_is_harmonic
|
|
||||||
have : Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f = Complex.conjCLE ∘ Complex.log ∘ f := by
|
|
||||||
funext z
|
|
||||||
unfold Function.comp
|
|
||||||
rw [Complex.log_conj]
|
|
||||||
rfl
|
|
||||||
exact Complex.slitPlane_arg_ne_pi (h₃ z)
|
|
||||||
rw [this]
|
|
||||||
rw [← harmonic_iff_comp_CLE_is_harmonic]
|
|
||||||
|
|
||||||
repeat
|
|
||||||
apply holomorphic_is_harmonic
|
|
||||||
intro z
|
|
||||||
apply DifferentiableAt.comp
|
|
||||||
exact Complex.differentiableAt_log (h₃ z)
|
|
||||||
exact h₁ z
|
|
||||||
|
|
||||||
|
|
||||||
theorem logabs_of_holomorphic_is_harmonic
|
|
||||||
{f : ℂ → ℂ}
|
|
||||||
(h₁ : Differentiable ℂ f)
|
|
||||||
(h₂ : ∀ z, f z ≠ 0)
|
|
||||||
(h₃ : ∀ z, f z ∈ Complex.slitPlane) :
|
|
||||||
Harmonic (fun z ↦ Real.log ‖f z‖) := by
|
|
||||||
|
|
||||||
-- Suffices: Harmonic (2⁻¹ • Real.log ∘ ⇑Complex.normSq ∘ f)
|
|
||||||
have : (fun z ↦ Real.log ‖f z‖) = (2 : ℝ)⁻¹ • (Real.log ∘ Complex.normSq ∘ f) := by
|
|
||||||
funext z
|
|
||||||
simp
|
|
||||||
unfold Complex.abs
|
|
||||||
simp
|
|
||||||
rw [Real.log_sqrt]
|
|
||||||
rw [div_eq_inv_mul (Real.log (Complex.normSq (f z))) 2]
|
|
||||||
exact Complex.normSq_nonneg (f z)
|
|
||||||
rw [this]
|
|
||||||
|
|
||||||
-- Suffices: Harmonic (Real.log ∘ ⇑Complex.normSq ∘ f)
|
|
||||||
apply (harmonic_iff_smul_const_is_harmonic (inv_ne_zero two_ne_zero)).1
|
|
||||||
|
|
||||||
exact log_normSq_of_holomorphic_is_harmonic h₁ h₂ h₃
|
|
||||||
|
|
Loading…
Reference in New Issue