Working…

This commit is contained in:
Stefan Kebekus 2025-01-03 11:09:51 +01:00
parent 4c4ed3d2b8
commit e7320231e9

View File

@ -224,6 +224,55 @@ theorem MeromorphicOn.divisor_add_const₁
tauto tauto
theorem MeromorphicOn.divisor_add_const₂
{f : }
{U : Set }
{z : }
(hf : MeromorphicOn f U)
(a : ) :
hf.divisor z < 0 → (hf.add (MeromorphicOn.const a)).divisor z < 0 := by
intro h
by_cases hz : z ∉ U
· have : hf.divisor z = 0 := by
unfold MeromorphicOn.divisor
simp [hz]
rw [this] at h
tauto
simp at hz
unfold MeromorphicOn.divisor
simp [hz]
unfold MeromorphicOn.divisor at h
simp [hz] at h
have : (hf z hz).order = (((hf.add (MeromorphicOn.const a))) z hz).order := by
have t₀ : (hf z hz).order < (0 : ) := by
by_contra hCon
simp only [not_lt] at hCon
rw [←WithTop.le_untop'_iff (b := 0)] at hCon
exact Lean.Omega.Int.le_lt_asymm hCon h
tauto
rw [← MeromorphicAt.order_add_of_ne_orders (hf z hz) (MeromorphicAt.const a z)]
simp
by_cases ha: (MeromorphicAt.const a z).order =
· simp [ha]
· calc (hf z hz).order
_ ≤ 0 := by exact le_of_lt t₀
_ ≤ (MeromorphicAt.const a z).order := by
apply AnalyticAt.meromorphicAt_order_nonneg
exact analyticAt_const
apply ne_of_lt
calc (hf z hz).order
_ < 0 := by exact t₀
_ ≤ (MeromorphicAt.const a z).order := by
apply AnalyticAt.meromorphicAt_order_nonneg
exact analyticAt_const
rwa [this] at h
theorem MeromorphicOn.divisor_of_makeStronglyMeromorphicOn theorem MeromorphicOn.divisor_of_makeStronglyMeromorphicOn
{f : } {f : }
{U : Set } {U : Set }