Update specialFunctions_CircleIntegral_affine.lean
This commit is contained in:
parent
a2b084f535
commit
e5b49993b7
@ -130,6 +130,7 @@ lemma int₀
|
|||||||
|
|
||||||
-- Integral of log ‖circleMap 0 1 x - 1‖
|
-- Integral of log ‖circleMap 0 1 x - 1‖
|
||||||
|
|
||||||
|
-- integral
|
||||||
lemma int₁₁ : ∫ (x : ℝ) in (0)..π, log (4 * sin x ^ 2) = 0 := by
|
lemma int₁₁ : ∫ (x : ℝ) in (0)..π, log (4 * sin x ^ 2) = 0 := by
|
||||||
|
|
||||||
have t₁ {x : ℝ} : x ∈ Set.Ioo 0 π → log (4 * sin x ^ 2) = log 4 + 2 * log (sin x) := by
|
have t₁ {x : ℝ} : x ∈ Set.Ioo 0 π → log (4 * sin x ^ 2) = log 4 + 2 * log (sin x) := by
|
||||||
@ -248,6 +249,7 @@ lemma int₁ :
|
|||||||
|
|
||||||
-- Integral of log ‖circleMap 0 1 x - a‖, for ‖a‖ = 1
|
-- Integral of log ‖circleMap 0 1 x - a‖, for ‖a‖ = 1
|
||||||
|
|
||||||
|
-- integrability
|
||||||
lemma int'₂
|
lemma int'₂
|
||||||
{a : ℂ}
|
{a : ℂ}
|
||||||
(ha : ‖a‖ = 1) :
|
(ha : ‖a‖ = 1) :
|
||||||
@ -310,7 +312,7 @@ lemma int'₂
|
|||||||
simp_rw [this] at A
|
simp_rw [this] at A
|
||||||
exact A
|
exact A
|
||||||
|
|
||||||
|
-- integral
|
||||||
lemma int₂
|
lemma int₂
|
||||||
{a : ℂ}
|
{a : ℂ}
|
||||||
(ha : ‖a‖ = 1) :
|
(ha : ‖a‖ = 1) :
|
||||||
@ -370,7 +372,7 @@ lemma int₂
|
|||||||
simp_rw [this]
|
simp_rw [this]
|
||||||
exact int₁
|
exact int₁
|
||||||
|
|
||||||
|
-- integral
|
||||||
lemma int₃
|
lemma int₃
|
||||||
{a : ℂ}
|
{a : ℂ}
|
||||||
(ha : a ∈ Metric.closedBall 0 1) :
|
(ha : a ∈ Metric.closedBall 0 1) :
|
||||||
@ -383,7 +385,7 @@ lemma int₃
|
|||||||
simp
|
simp
|
||||||
linarith
|
linarith
|
||||||
|
|
||||||
|
-- integral
|
||||||
lemma int₄
|
lemma int₄
|
||||||
{a : ℂ}
|
{a : ℂ}
|
||||||
{R : ℝ}
|
{R : ℝ}
|
||||||
@ -485,3 +487,33 @@ lemma int₄
|
|||||||
exact Ne.symm (ne_of_lt hR)
|
exact Ne.symm (ne_of_lt hR)
|
||||||
rw [div_self this] at h₂a
|
rw [div_self this] at h₂a
|
||||||
tauto
|
tauto
|
||||||
|
|
||||||
|
|
||||||
|
lemma intervalIntegrable_logAbs_circleMap_sub_const
|
||||||
|
{a c : ℂ}
|
||||||
|
{r : ℝ}
|
||||||
|
(hr : r ≠ 0) :
|
||||||
|
IntervalIntegrable (fun x ↦ log ‖circleMap c r x - a‖) volume 0 (2 * π) := by
|
||||||
|
|
||||||
|
have {x : ℝ} : log ‖circleMap c r x - a‖ = log ‖r * (circleMap 0 1 x - r⁻¹ * (a - c))‖ := by
|
||||||
|
unfold circleMap
|
||||||
|
congr 2
|
||||||
|
simp
|
||||||
|
rw [mul_sub]
|
||||||
|
rw [← mul_assoc]
|
||||||
|
simp [hr]
|
||||||
|
ring
|
||||||
|
simp_rw [this]
|
||||||
|
|
||||||
|
have {x : ℝ} : log ‖r * (circleMap 0 1 x - r⁻¹ * (a - c))‖ = log r + log ‖(circleMap 0 1 x - r⁻¹ * (a - c))‖ := by
|
||||||
|
rw [norm_mul]
|
||||||
|
rw [log_mul]
|
||||||
|
simp
|
||||||
|
--
|
||||||
|
simp [hr]
|
||||||
|
--
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
sorry
|
||||||
|
sorry
|
||||||
|
Loading…
Reference in New Issue
Block a user