Update specialFunctions_CircleIntegral_affine.lean

This commit is contained in:
Stefan Kebekus
2024-12-18 13:07:36 +01:00
parent a2b084f535
commit e5b49993b7

View File

@@ -130,6 +130,7 @@ lemma int₀
-- Integral of log ‖circleMap 0 1 x - 1‖
-- integral
lemma int₁₁ : (x : ) in (0)..π, log (4 * sin x ^ 2) = 0 := by
have t₁ {x : } : x Set.Ioo 0 π log (4 * sin x ^ 2) = log 4 + 2 * log (sin x) := by
@@ -248,6 +249,7 @@ lemma int₁ :
-- Integral of log ‖circleMap 0 1 x - a‖, for ‖a‖ = 1
-- integrability
lemma int'₂
{a : }
(ha : a = 1) :
@@ -310,7 +312,7 @@ lemma int'₂
simp_rw [this] at A
exact A
-- integral
lemma int₂
{a : }
(ha : a = 1) :
@@ -370,7 +372,7 @@ lemma int₂
simp_rw [this]
exact int₁
-- integral
lemma int₃
{a : }
(ha : a Metric.closedBall 0 1) :
@@ -383,7 +385,7 @@ lemma int₃
simp
linarith
-- integral
lemma int₄
{a : }
{R : }
@@ -485,3 +487,33 @@ lemma int₄
exact Ne.symm (ne_of_lt hR)
rw [div_self this] at h₂a
tauto
lemma intervalIntegrable_logAbs_circleMap_sub_const
{a c : }
{r : }
(hr : r 0) :
IntervalIntegrable (fun x log circleMap c r x - a) volume 0 (2 * π) := by
have {x : } : log circleMap c r x - a = log r * (circleMap 0 1 x - r⁻¹ * (a - c)) := by
unfold circleMap
congr 2
simp
rw [mul_sub]
rw [ mul_assoc]
simp [hr]
ring
simp_rw [this]
have {x : } : log r * (circleMap 0 1 x - r⁻¹ * (a - c)) = log r + log (circleMap 0 1 x - r⁻¹ * (a - c)) := by
rw [norm_mul]
rw [log_mul]
simp
--
simp [hr]
--
sorry
sorry