Make it work!
This commit is contained in:
parent
c44f4fe3b0
commit
e5383eff34
|
@ -21,46 +21,37 @@ def Harmonic (f : ℂ → ℂ) : Prop :=
|
||||||
(ContDiff ℝ 2 f) ∧ (∀ z, Complex.laplace f z = 0)
|
(ContDiff ℝ 2 f) ∧ (∀ z, Complex.laplace f z = 0)
|
||||||
|
|
||||||
|
|
||||||
lemma zwoDiff (f : ℝ × ℝ → ℝ) (h : ContDiff ℝ 2 f) : ∀ z a b : ℝ × ℝ, 0 = 1 := by
|
lemma derivSymm (f : ℂ → ℂ) (hf : ContDiff ℝ 2 f) :
|
||||||
intro z a b
|
|
||||||
|
|
||||||
let fx := fun w ↦ (fderiv ℝ f w) a
|
|
||||||
let fxx := fun w ↦ (fderiv ℝ fx w) a
|
|
||||||
let f2 := (fderiv ℝ (fun w => fderiv ℝ f w) z) a a
|
|
||||||
|
|
||||||
have : iteratedFDeriv ℝ 1 f z ![a] = 0 := by
|
|
||||||
rw [iteratedFDeriv_succ_apply_left]
|
|
||||||
simp
|
|
||||||
let g := iteratedFDeriv ℝ 0 f
|
|
||||||
simp at g
|
|
||||||
sorry
|
|
||||||
|
|
||||||
have : f2 = fxx z := by
|
|
||||||
dsimp [f2, fxx, fx]
|
|
||||||
|
|
||||||
sorry
|
|
||||||
|
|
||||||
sorry
|
|
||||||
|
|
||||||
|
|
||||||
lemma derivSymm (f : ℂ → ℂ) (h : Differentiable ℝ f) :
|
|
||||||
∀ z a b : ℂ, (fderiv ℝ (fun w => fderiv ℝ f w) z) a b = (fderiv ℝ (fun w => fderiv ℝ f w) z) b a := by
|
∀ z a b : ℂ, (fderiv ℝ (fun w => fderiv ℝ f w) z) a b = (fderiv ℝ (fun w => fderiv ℝ f w) z) b a := by
|
||||||
intro z a b
|
intro z a b
|
||||||
|
|
||||||
let f' := fun w => (fderiv ℝ f w)
|
let f' := fun w => (fderiv ℝ f w)
|
||||||
have h₀ : ∀ y, HasFDerivAt f (f' y) y := by
|
have h₀ : ∀ y, HasFDerivAt f (f' y) y := by
|
||||||
|
have h : Differentiable ℝ f := by
|
||||||
|
exact (contDiff_succ_iff_fderiv.1 hf).left
|
||||||
exact fun y => DifferentiableAt.hasFDerivAt (h y)
|
exact fun y => DifferentiableAt.hasFDerivAt (h y)
|
||||||
|
|
||||||
let f'' := (fderiv ℝ f' z)
|
let f'' := (fderiv ℝ f' z)
|
||||||
have h₁ : HasFDerivAt f' f'' z := by
|
have h₁ : HasFDerivAt f' f'' z := by
|
||||||
apply DifferentiableAt.hasFDerivAt
|
apply DifferentiableAt.hasFDerivAt
|
||||||
sorry
|
let A := (contDiff_succ_iff_fderiv.1 hf).right
|
||||||
|
let B := (contDiff_succ_iff_fderiv.1 A).left
|
||||||
|
simp at B
|
||||||
|
exact B z
|
||||||
|
|
||||||
let A := second_derivative_symmetric h₀ h₁ a b
|
let A := second_derivative_symmetric h₀ h₁ a b
|
||||||
dsimp [f'', f'] at A
|
dsimp [f'', f'] at A
|
||||||
apply A
|
apply A
|
||||||
|
|
||||||
|
|
||||||
|
lemma l₂ {f : ℂ → ℂ} (hf : ContDiff ℝ 2 f) (z a b : ℂ) :
|
||||||
|
fderiv ℝ (fderiv ℝ f) z b a = fderiv ℝ (fun w ↦ fderiv ℝ f w a) z b := by
|
||||||
|
rw [fderiv_clm_apply]
|
||||||
|
· simp
|
||||||
|
· exact (contDiff_succ_iff_fderiv.1 hf).2.differentiable le_rfl z
|
||||||
|
· simp
|
||||||
|
|
||||||
|
|
||||||
theorem holomorphic_is_harmonic (f : ℂ → ℂ) :
|
theorem holomorphic_is_harmonic (f : ℂ → ℂ) :
|
||||||
Differentiable ℂ f → Harmonic f := by
|
Differentiable ℂ f → Harmonic f := by
|
||||||
|
|
||||||
|
@ -84,10 +75,17 @@ theorem holomorphic_is_harmonic (f : ℂ → ℂ) :
|
||||||
intro z
|
intro z
|
||||||
rw [CauchyRiemann₁ (h z)]
|
rw [CauchyRiemann₁ (h z)]
|
||||||
|
|
||||||
|
have t₂₀ : ContDiff ℝ 2 f := by exact ContDiff.restrict_scalars ℝ (Differentiable.contDiff h)
|
||||||
|
|
||||||
|
have t₀₀ : Differentiable ℝ (fun w => (fderiv ℝ f w)) := by
|
||||||
|
let A := (contDiff_succ_iff_fderiv.1 t₂₀).right
|
||||||
|
let B := (contDiff_succ_iff_fderiv.1 A).left
|
||||||
|
exact B
|
||||||
|
|
||||||
have t₀ : ∀ z, DifferentiableAt ℝ (fun w => (fderiv ℝ f w) 1) z := by
|
have t₀ : ∀ z, DifferentiableAt ℝ (fun w => (fderiv ℝ f w) 1) z := by
|
||||||
intro z
|
intro z
|
||||||
|
let A := t₀₀
|
||||||
sorry
|
fun_prop
|
||||||
|
|
||||||
have t₁ : ∀ x, (fderiv ℝ (fun w => Complex.I * (fderiv ℝ f w) 1) z) x
|
have t₁ : ∀ x, (fderiv ℝ (fun w => Complex.I * (fderiv ℝ f w) 1) z) x
|
||||||
= Complex.I * ((fderiv ℝ (fun w => (fderiv ℝ f w) 1) z) x) := by
|
= Complex.I * ((fderiv ℝ (fun w => (fderiv ℝ f w) 1) z) x) := by
|
||||||
|
@ -97,12 +95,14 @@ theorem holomorphic_is_harmonic (f : ℂ → ℂ) :
|
||||||
exact t₀ z
|
exact t₀ z
|
||||||
rw [t₁]
|
rw [t₁]
|
||||||
|
|
||||||
have t₂₀ : Differentiable ℝ f := by sorry
|
|
||||||
have t₂ : (fderiv ℝ (fun w => (fderiv ℝ f w) 1) z) Complex.I
|
have t₂ : (fderiv ℝ (fun w => (fderiv ℝ f w) 1) z) Complex.I
|
||||||
= (fderiv ℝ (fun w => (fderiv ℝ f w) Complex.I) z) 1 := by
|
= (fderiv ℝ (fun w => (fderiv ℝ f w) Complex.I) z) 1 := by
|
||||||
let A := derivSymm f t₂₀ z 1 Complex.I
|
let A := derivSymm f t₂₀ z 1 Complex.I
|
||||||
|
let B := l₂ t₂₀ z Complex.I 1
|
||||||
sorry
|
rw [← B]
|
||||||
|
rw [A]
|
||||||
|
let C := l₂ t₂₀ z 1 Complex.I
|
||||||
|
rw [C]
|
||||||
rw [t₂]
|
rw [t₂]
|
||||||
|
|
||||||
conv =>
|
conv =>
|
||||||
|
|
Loading…
Reference in New Issue