Update Mathlib

This commit is contained in:
Stefan Kebekus 2024-09-09 12:45:07 +02:00
parent 1ccc9679e5
commit e3853f1632
4 changed files with 456 additions and 6 deletions

View File

@ -0,0 +1,449 @@
import Mathlib.Analysis.Analytic.Constructions
import Mathlib.Analysis.Analytic.IsolatedZeros
import Mathlib.Analysis.Complex.Basic
theorem AnalyticOn.order_eq_nat_iff
{f : }
{U : Set }
{z₀ : }
(hf : AnalyticOn f U)
(hz₀ : z₀ ∈ U)
(n : ) :
(hf z₀ hz₀).order = ↑n ↔ ∃ (g : ), AnalyticOn g U ∧ g z₀ ≠ 0 ∧ ∀ z, f z = (z - z₀) ^ n • g z := by
constructor
-- Direction →
intro hn
obtain ⟨gloc, h₁gloc, h₂gloc, h₃gloc⟩ := (AnalyticAt.order_eq_nat_iff (hf z₀ hz₀) n).1 hn
-- Define a candidate function; this is (f z) / (z - z₀) ^ n with the
-- removable singularity removed
let g : := fun z ↦ if z = z₀ then gloc z₀ else (f z) / (z - z₀) ^ n
-- Describe g near z₀
have g_near_z₀ : ∀ᶠ (z : ) in nhds z₀, g z = gloc z := by
rw [eventually_nhds_iff]
obtain ⟨t, h₁t, h₂t, h₃t⟩ := eventually_nhds_iff.1 h₃gloc
use t
constructor
· intro y h₁y
by_cases h₂y : y = z₀
· dsimp [g]; simp [h₂y]
· dsimp [g]; simp [h₂y]
rw [div_eq_iff_mul_eq, eq_comm, mul_comm]
exact h₁t y h₁y
norm_num
rw [sub_eq_zero]
tauto
· constructor
· assumption
· assumption
-- Describe g near points z₁ that are different from z₀
have g_near_z₁ {z₁ : } : z₁ ≠ z₀ → ∀ᶠ (z : ) in nhds z₁, g z = f z / (z - z₀) ^ n := by
intro hz₁
rw [eventually_nhds_iff]
use {z₀}ᶜ
constructor
· intro y hy
simp at hy
simp [g, hy]
· exact ⟨isOpen_compl_singleton, hz₁⟩
-- Use g and show that it has all required properties
use g
constructor
· -- AnalyticOn g U
intro z h₁z
by_cases h₂z : z = z₀
· rw [h₂z]
apply AnalyticAt.congr h₁gloc
exact Filter.EventuallyEq.symm g_near_z₀
· simp_rw [eq_comm] at g_near_z₁
apply AnalyticAt.congr _ (g_near_z₁ h₂z)
apply AnalyticAt.div
exact hf z h₁z
apply AnalyticAt.pow
apply AnalyticAt.sub
apply analyticAt_id
apply analyticAt_const
simp
rw [sub_eq_zero]
tauto
· constructor
· simp [g]; tauto
· intro z
by_cases h₂z : z = z₀
· rw [h₂z, g_near_z₀.self_of_nhds]
exact h₃gloc.self_of_nhds
· rw [(g_near_z₁ h₂z).self_of_nhds]
simp [h₂z]
rw [div_eq_mul_inv, mul_comm, mul_assoc, inv_mul_cancel₀]
simp; norm_num
rw [sub_eq_zero]
tauto
-- direction ←
intro h
obtain ⟨g, h₁g, h₂g, h₃g⟩ := h
rw [AnalyticAt.order_eq_nat_iff]
use g
exact ⟨h₁g z₀ hz₀, ⟨h₂g, Filter.Eventually.of_forall h₃g⟩⟩
theorem AnalyticAt.order_mul
{f₁ f₂ : }
{z₀ : }
(hf₁ : AnalyticAt f₁ z₀)
(hf₂ : AnalyticAt f₂ z₀) :
(AnalyticAt.mul hf₁ hf₂).order = hf₁.order + hf₂.order := by
by_cases h₂f₁ : hf₁.order =
· simp [h₂f₁]
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff]
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff] at h₂f₁
obtain ⟨t, h₁t, h₂t, h₃t⟩ := h₂f₁
use t
constructor
· intro y hy
rw [h₁t y hy]
ring
· exact ⟨h₂t, h₃t⟩
· by_cases h₂f₂ : hf₂.order =
· simp [h₂f₂]
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff]
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff] at h₂f₂
obtain ⟨t, h₁t, h₂t, h₃t⟩ := h₂f₂
use t
constructor
· intro y hy
rw [h₁t y hy]
ring
· exact ⟨h₂t, h₃t⟩
· obtain ⟨g₁, h₁g₁, h₂g₁, h₃g₁⟩ := (AnalyticAt.order_eq_nat_iff hf₁ ↑hf₁.order.toNat).1 (eq_comm.1 (ENat.coe_toNat h₂f₁))
obtain ⟨g₂, h₁g₂, h₂g₂, h₃g₂⟩ := (AnalyticAt.order_eq_nat_iff hf₂ ↑hf₂.order.toNat).1 (eq_comm.1 (ENat.coe_toNat h₂f₂))
rw [← ENat.coe_toNat h₂f₁, ← ENat.coe_toNat h₂f₂, ← ENat.coe_add]
rw [AnalyticAt.order_eq_nat_iff (AnalyticAt.mul hf₁ hf₂) ↑(hf₁.order.toNat + hf₂.order.toNat)]
use g₁ * g₂
constructor
· exact AnalyticAt.mul h₁g₁ h₁g₂
· constructor
· simp; tauto
· obtain ⟨t₁, h₁t₁, h₂t₁, h₃t₁⟩ := eventually_nhds_iff.1 h₃g₁
obtain ⟨t₂, h₁t₂, h₂t₂, h₃t₂⟩ := eventually_nhds_iff.1 h₃g₂
rw [eventually_nhds_iff]
use t₁ ∩ t₂
constructor
· intro y hy
rw [h₁t₁ y hy.1, h₁t₂ y hy.2]
simp; ring
· constructor
· exact IsOpen.inter h₂t₁ h₂t₂
· exact Set.mem_inter h₃t₁ h₃t₂
theorem AnalyticOn.eliminateZeros
{f : }
{U : Set }
{A : Finset U}
(hf : AnalyticOn f U)
(n : ) :
(∀ a ∈ A, (hf a.1 a.2).order = n a) → ∃ (g : ), AnalyticOn g U ∧ (∀ a ∈ A, g a ≠ 0) ∧ ∀ z, f z = (∏ a ∈ A, (z - a) ^ (n a)) • g z := by
apply Finset.induction (α := U) (p := fun A ↦ (∀ a ∈ A, (hf a.1 a.2).order = n a) → ∃ (g : ), AnalyticOn g U ∧ (∀ a ∈ A, g a ≠ 0) ∧ ∀ z, f z = (∏ a ∈ A, (z - a) ^ (n a)) • g z)
-- case empty
simp
use f
simp
exact hf
-- case insert
intro b₀ B hb iHyp
intro hBinsert
obtain ⟨g₀, h₁g₀, h₂g₀, h₃g₀⟩ := iHyp (fun a ha ↦ hBinsert a (Finset.mem_insert_of_mem ha))
have : (h₁g₀ b₀ b₀.2).order = n b₀ := by
rw [← hBinsert b₀ (Finset.mem_insert_self b₀ B)]
let φ := fun z ↦ (∏ a ∈ B, (z - a.1) ^ n a.1)
have : f = fun z ↦ φ z * g₀ z := by
funext z
rw [h₃g₀ z]
rfl
simp_rw [this]
have h₁φ : AnalyticAt φ b₀ := by
dsimp [φ]
apply Finset.analyticAt_prod
intro b _
apply AnalyticAt.pow
apply AnalyticAt.sub
apply analyticAt_id
exact analyticAt_const
have h₂φ : h₁φ.order = (0 : ) := by
rw [AnalyticAt.order_eq_nat_iff h₁φ 0]
use φ
constructor
· assumption
· constructor
· dsimp [φ]
push_neg
rw [Finset.prod_ne_zero_iff]
intro a ha
simp
have : ¬ (b₀.1 - a.1 = 0) := by
by_contra C
rw [sub_eq_zero] at C
rw [SetCoe.ext C] at hb
tauto
tauto
· simp
rw [AnalyticAt.order_mul h₁φ (h₁g₀ b₀ b₀.2)]
rw [h₂φ]
simp
obtain ⟨g₁, h₁g₁, h₂g₁, h₃g₁⟩ := (AnalyticOn.order_eq_nat_iff h₁g₀ b₀.2 (n b₀)).1 this
use g₁
constructor
· exact h₁g₁
· constructor
· intro a h₁a
by_cases h₂a : a = b₀
· rwa [h₂a]
· let A' := Finset.mem_of_mem_insert_of_ne h₁a h₂a
let B' := h₃g₁ a
let C' := h₂g₀ a A'
rw [B'] at C'
exact right_ne_zero_of_smul C'
· intro z
let A' := h₃g₀ z
rw [h₃g₁ z] at A'
rw [A']
rw [← smul_assoc]
congr
simp
rw [Finset.prod_insert]
ring
exact hb
theorem XX
{f : }
{U : Set }
(hU : IsPreconnected U)
(h₁f : AnalyticOn f U)
(h₂f : ∃ u ∈ U, f u ≠ 0) :
∀ (hu : u ∈ U), (h₁f u hu).order.toNat = (h₁f u hu).order := by
intro hu
apply ENat.coe_toNat
by_contra C
rw [(h₁f u hu).order_eq_top_iff] at C
rw [← (h₁f u hu).frequently_zero_iff_eventually_zero] at C
obtain ⟨u₁, h₁u₁, h₂u₁⟩ := h₂f
rw [(h₁f.eqOn_zero_of_preconnected_of_frequently_eq_zero hU hu C) h₁u₁] at h₂u₁
tauto
theorem discreteZeros
{f : }
{U : Set }
(hU : IsPreconnected U)
(h₁f : AnalyticOn f U)
(h₂f : ∃ u ∈ U, f u ≠ 0) :
DiscreteTopology ↑(U ∩ f⁻¹' {0}) := by
simp_rw [← singletons_open_iff_discrete]
simp_rw [Metric.isOpen_singleton_iff]
intro z
let A := XX hU h₁f h₂f z.2.1
rw [eq_comm] at A
rw [AnalyticAt.order_eq_nat_iff] at A
obtain ⟨g, h₁g, h₂g, h₃g⟩ := A
rw [Metric.eventually_nhds_iff_ball] at h₃g
have : ∃ ε > 0, ∀ y ∈ Metric.ball (↑z) ε, g y ≠ 0 := by
have h₄g : ContinuousAt g z := AnalyticAt.continuousAt h₁g
have : {0}ᶜ ∈ nhds (g z) := by
exact compl_singleton_mem_nhds_iff.mpr h₂g
let F := h₄g.preimage_mem_nhds this
rw [Metric.mem_nhds_iff] at F
obtain ⟨ε, h₁ε, h₂ε⟩ := F
use ε
constructor; exact h₁ε
intro y hy
let G := h₂ε hy
simp at G
exact G
obtain ⟨ε₁, h₁ε₁⟩ := this
obtain ⟨ε₂, h₁ε₂, h₂ε₂⟩ := h₃g
use min ε₁ ε₂
constructor
· have : 0 < min ε₁ ε₂ := by
rw [lt_min_iff]
exact And.imp_right (fun _ => h₁ε₂) h₁ε₁
exact this
intro y
intro h₁y
have h₂y : ↑y ∈ Metric.ball (↑z) ε₂ := by
simp
calc dist y z
_ < min ε₁ ε₂ := by assumption
_ ≤ ε₂ := by exact min_le_right ε₁ ε₂
have h₃y : ↑y ∈ Metric.ball (↑z) ε₁ := by
simp
calc dist y z
_ < min ε₁ ε₂ := by assumption
_ ≤ ε₁ := by exact min_le_left ε₁ ε₂
have F := h₂ε₂ y.1 h₂y
rw [y.2.2] at F
simp at F
have : g y.1 ≠ 0 := by
exact h₁ε₁.2 y h₃y
simp [this] at F
ext
rw [sub_eq_zero] at F
tauto
theorem finiteZeros
{f : }
{U : Set }
(h₁U : IsPreconnected U)
(h₂U : IsCompact U)
(h₁f : AnalyticOn f U)
(h₂f : ∃ u ∈ U, f u ≠ 0) :
Set.Finite ↑(U ∩ f⁻¹' {0}) := by
have hinter : IsCompact ↑(U ∩ f⁻¹' {0}) := by
apply IsCompact.of_isClosed_subset h₂U
apply h₁f.continuousOn.preimage_isClosed_of_isClosed
exact IsCompact.isClosed h₂U
exact isClosed_singleton
exact Set.inter_subset_left
apply hinter.finite
apply DiscreteTopology.of_subset (s := ↑(U ∩ f⁻¹' {0}))
exact discreteZeros h₁U h₁f h₂f
rfl
theorem AnalyticOnCompact.eliminateZeros
{f : }
{U : Set }
(h₁U : IsPreconnected U)
(h₂U : IsCompact U)
(h₁f : AnalyticOn f U)
(h₂f : ∃ u ∈ U, f u ≠ 0) :
∃ (g : ) (A : Finset U), AnalyticOn g U ∧ (∀ z ∈ U, g z ≠ 0) ∧ ∀ z, f z = (∏ a ∈ A, (z - a) ^ (h₁f a a.2).order.toNat) • g z := by
let ι : U → := Subtype.val
let A₁ := ι⁻¹' (U ∩ f⁻¹' {0})
have : A₁.Finite := by
apply Set.Finite.preimage
exact Set.injOn_subtype_val
exact finiteZeros h₁U h₂U h₁f h₂f
let A := this.toFinset
let n : := by
intro z
by_cases hz : z ∈ U
· exact (h₁f z hz).order.toNat
· exact 0
have hn : ∀ a ∈ A, (h₁f a a.2).order = n a := by
intro a _
dsimp [n]
simp
rw [eq_comm]
apply XX h₁U
exact h₂f
obtain ⟨g, h₁g, h₂g, h₃g⟩ := AnalyticOn.eliminateZeros (A := A) h₁f n hn
use g
use A
have inter : ∀ (z : ), f z = (∏ a ∈ A, (z - ↑a) ^ (h₁f (↑a) a.property).order.toNat) • g z := by
intro z
rw [h₃g z]
congr
funext a
congr
dsimp [n]
simp [a.2]
constructor
· exact h₁g
· constructor
· intro z h₁z
by_cases h₂z : ⟨z, h₁z⟩ ∈ ↑A.toSet
· exact h₂g ⟨z, h₁z⟩ h₂z
· have : f z ≠ 0 := by
by_contra C
have : ⟨z, h₁z⟩ ∈ ↑A₁ := by
dsimp [A₁, ι]
simp
exact C
have : ⟨z, h₁z⟩ ∈ ↑A.toSet := by
dsimp [A]
simp
exact this
tauto
rw [inter z] at this
exact right_ne_zero_of_smul this
· exact inter
noncomputable def AnalyticOn.order
{f : }
{U : Set }
(hf : AnalyticOn f U) :
→ ℕ∞ := by
intro z
if hz : z ∈ U then
exact (hf z hz).order
else
exact 0
theorem AnalyticOnCompact.eliminateZeros₁
{f : }
{U : Set }
(h₁U : IsPreconnected U)
(h₂U : IsCompact U)
(h₁f : AnalyticOn f U)
(h₂f : ∃ u ∈ U, f u ≠ 0) :
∃ (g : ), AnalyticOn g U ∧ (∀ z ∈ U, g z ≠ 0) ∧ ∀ z, f z = (∏ᶠ u, (z - u) ^ (h₁f.order u).toNat) • g z := by
obtain ⟨g, A, h₁g, h₂g, h₃g⟩ := AnalyticOnCompact.eliminateZeros h₁U h₂U h₁f h₂f
use g
constructor
· exact h₁g
· constructor
· exact h₂g
· intro z
rw [h₃g z]
congr
sorry

View File

@ -85,11 +85,11 @@ theorem laplace_add_ContDiffOn
have t₁ : DifferentiableAt (partialDeriv 1 f₁) x := by
let B₀ := (h₁ x hx).contDiffAt (IsOpen.mem_nhds hs hx)
let A₀ := partialDeriv_contDiffAt B₀ 1
exact A₀.differentiableAt (Submonoid.oneLE.proof_2 ℕ∞)
apply A₀.differentiableAt (Preorder.le_refl 1)
have t₂ : DifferentiableAt (partialDeriv 1 f₂) x := by
let B₀ := (h₂ x hx).contDiffAt (IsOpen.mem_nhds hs hx)
let A₀ := partialDeriv_contDiffAt B₀ 1
exact A₀.differentiableAt (Submonoid.oneLE.proof_2 ℕ∞)
exact A₀.differentiableAt (Preorder.le_refl 1)
rw [partialDeriv_add₂_differentiableAt t₁ t₂]
have : partialDeriv Complex.I (f₁ + f₂) =ᶠ[nhds x] (partialDeriv Complex.I f₁) + (partialDeriv Complex.I f₂) := by
@ -105,11 +105,11 @@ theorem laplace_add_ContDiffOn
have t₃ : DifferentiableAt (partialDeriv Complex.I f₁) x := by
let B₀ := (h₁ x hx).contDiffAt (IsOpen.mem_nhds hs hx)
let A₀ := partialDeriv_contDiffAt B₀ Complex.I
exact A₀.differentiableAt (Submonoid.oneLE.proof_2 ℕ∞)
exact A₀.differentiableAt (Preorder.le_refl 1)
have t₄ : DifferentiableAt (partialDeriv Complex.I f₂) x := by
let B₀ := (h₂ x hx).contDiffAt (IsOpen.mem_nhds hs hx)
let A₀ := partialDeriv_contDiffAt B₀ Complex.I
exact A₀.differentiableAt (Submonoid.oneLE.proof_2 ℕ∞)
exact A₀.differentiableAt (Preorder.le_refl 1)
rw [partialDeriv_add₂_differentiableAt t₃ t₄]
-- I am super confused at this point because the tactic 'ring' does not work.

View File

@ -76,7 +76,7 @@ theorem periodic_integrability4
obtain ⟨n₁, hn₁⟩ := exists_nat_ge ((t -min a₁ a₂) / T)
use n₁
rw [sub_le_iff_le_add]
rw [div_le_iff hT] at hn₁
rw [div_le_iff hT] at hn₁
rw [sub_le_iff_le_add] at hn₁
rw [add_comm]
exact hn₁
@ -84,7 +84,7 @@ theorem periodic_integrability4
obtain ⟨n₂, hn₂⟩ := exists_nat_ge ((max a₁ a₂ - t) / T)
use n₂
rw [← sub_le_iff_le_add]
rw [div_le_iff hT] at hn₂
rw [div_le_iff hT] at hn₂
linarith
have : Set.uIcc a₁ a₂ ⊆ Set.uIcc (t - n₁ * T) (t + n₂ * T) := by

View File

@ -1,5 +1,6 @@
import Mathlib.Analysis.SpecialFunctions.Integrals
import Mathlib.Analysis.SpecialFunctions.Log.NegMulLog
import Mathlib.Analysis.Convex.SpecificFunctions.Deriv
open scoped Interval Topology
open Real Filter MeasureTheory intervalIntegral