Update, working, …

This commit is contained in:
Stefan Kebekus
2024-10-22 17:12:59 +02:00
parent 25b0ffd899
commit e1b948ad2c
2 changed files with 58 additions and 30 deletions

View File

@@ -81,41 +81,49 @@ theorem AnalyticAt.stronglyMeromorphicAt
tauto
theorem MeromorphicAt.order_neq_top_iff
{f : }
{z₀ : }
(hf : MeromorphicAt f z₀) :
hf.order (g : ), AnalyticAt g z₀ g z₀ 0 (z : ) in nhdsWithin z₀ {z₀}, f z = (z - z₀) ^ (hf.order.untop' 0) g z := by
rw [ hf.order_eq_int_iff (hf.order.untop' 0)]
constructor
· intro h₁f
apply?
exact Eq.symm (ENat.coe_toNat h₁f)
· intro h₁f
exact ENat.coe_toNat_eq_self.mp (id (Eq.symm h₁f))
/- Make strongly MeromorphicAt -/
noncomputable def MeromorphicAt.makeStronglyMeromorphicAt
{f : }
{z₀ : }
(hf : MeromorphicAt f z₀) :
:= by
by_cases h₁f : hf.order =
· exact 0
·
intro z
by_cases z = z₀
· by_cases hf : hf.order = 0
· have : (0 : WithTop ) = (0 : ) := rfl
rw [this, hf.order_eq_int_iff] at h₂f
exact (Classical.choose h₂f) z₀
· by_cases hf : hf.order = (0 : )
· rw [hf.order_eq_int_iff] at h₁f
exact (Classical.choose h₁f) z₀
· exact 0
· exact f z
lemma m₁
{f : }
{z₀ : }
(hf : MeromorphicAt f z₀) :
z z₀, f z = hf.makeStronglyMeromorphicAt z := by
intro z hz
unfold MeromorphicAt.makeStronglyMeromorphicAt
simp [hz]
lemma m₂
{f : }
{z₀ : }
(hf : MeromorphicAt f z₀) :
(z : ) in nhdsWithin z₀ {z₀}, f z = hf.makeStronglyMeromorphicAt z := by
apply eventually_nhdsWithin_of_forall
exact fun x a => m₁ hf x a
open Topology
lemma Mnhds
{f g : }
{z₀ : }
(h₁ : (z : ) in nhdsWithin z₀ {z₀}, f z = g z)
(h₂ : f z₀ = g z₀) :
(z : ) in nhds z₀, f z = g z := by
rw [eventually_nhds_iff]
rw [eventually_nhdsWithin_iff] at h₁
sorry
theorem StronglyMeromorphicAt_of_makeStronglyMeromorphic
{f : }
@@ -123,6 +131,26 @@ theorem StronglyMeromorphicAt_of_makeStronglyMeromorphic
(hf : MeromorphicAt f z₀) :
StronglyMeromorphicAt hf.makeStronglyMeromorphicAt z₀ := by
by_cases h₂f : hf.order =
· rw [MeromorphicAt.order_eq_top_iff] at h₂f
let Z : := fun z 0
have : hf.makeStronglyMeromorphicAt =[𝓝 z₀] 0 := by
--unfold Filter.EventuallyEq
apply Mnhds
· apply eventually_nhdsWithin_of_forall
intro x hx
sorry
sorry
apply AnalyticAt.stronglyMeromorphicAt
rw [analyticAt_congr this]
apply analyticAt_const
by_cases h₂f : hf.order = 0