Update, working, …
This commit is contained in:
@@ -81,41 +81,49 @@ theorem AnalyticAt.stronglyMeromorphicAt
|
||||
tauto
|
||||
|
||||
|
||||
theorem MeromorphicAt.order_neq_top_iff
|
||||
{f : ℂ → ℂ}
|
||||
{z₀ : ℂ}
|
||||
(hf : MeromorphicAt f z₀) :
|
||||
hf.order ≠ ⊤ ↔ ∃ (g : ℂ → ℂ), AnalyticAt ℂ g z₀ ∧ g z₀ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhdsWithin z₀ {z₀}ᶜ, f z = (z - z₀) ^ (hf.order.untop' 0) • g z := by
|
||||
|
||||
rw [← hf.order_eq_int_iff (hf.order.untop' 0)]
|
||||
constructor
|
||||
· intro h₁f
|
||||
apply?
|
||||
exact Eq.symm (ENat.coe_toNat h₁f)
|
||||
· intro h₁f
|
||||
exact ENat.coe_toNat_eq_self.mp (id (Eq.symm h₁f))
|
||||
|
||||
|
||||
/- Make strongly MeromorphicAt -/
|
||||
noncomputable def MeromorphicAt.makeStronglyMeromorphicAt
|
||||
{f : ℂ → ℂ}
|
||||
{z₀ : ℂ}
|
||||
(hf : MeromorphicAt f z₀) :
|
||||
ℂ → ℂ := by
|
||||
|
||||
by_cases h₁f : hf.order = ⊤
|
||||
· exact 0
|
||||
·
|
||||
|
||||
intro z
|
||||
by_cases z = z₀
|
||||
· by_cases h₂f : hf.order = 0
|
||||
· have : (0 : WithTop ℤ) = (0 : ℤ) := rfl
|
||||
rw [this, hf.order_eq_int_iff] at h₂f
|
||||
exact (Classical.choose h₂f) z₀
|
||||
· by_cases h₁f : hf.order = (0 : ℤ)
|
||||
· rw [hf.order_eq_int_iff] at h₁f
|
||||
exact (Classical.choose h₁f) z₀
|
||||
· exact 0
|
||||
· exact f z
|
||||
|
||||
lemma m₁
|
||||
{f : ℂ → ℂ}
|
||||
{z₀ : ℂ}
|
||||
(hf : MeromorphicAt f z₀) :
|
||||
∀ z ≠ z₀, f z = hf.makeStronglyMeromorphicAt z := by
|
||||
intro z hz
|
||||
unfold MeromorphicAt.makeStronglyMeromorphicAt
|
||||
simp [hz]
|
||||
|
||||
lemma m₂
|
||||
{f : ℂ → ℂ}
|
||||
{z₀ : ℂ}
|
||||
(hf : MeromorphicAt f z₀) :
|
||||
∀ᶠ (z : ℂ) in nhdsWithin z₀ {z₀}ᶜ, f z = hf.makeStronglyMeromorphicAt z := by
|
||||
apply eventually_nhdsWithin_of_forall
|
||||
exact fun x a => m₁ hf x a
|
||||
|
||||
|
||||
open Topology
|
||||
|
||||
lemma Mnhds
|
||||
{f g : ℂ → ℂ}
|
||||
{z₀ : ℂ}
|
||||
(h₁ : ∀ᶠ (z : ℂ) in nhdsWithin z₀ {z₀}ᶜ, f z = g z)
|
||||
(h₂ : f z₀ = g z₀) :
|
||||
∀ᶠ (z : ℂ) in nhds z₀, f z = g z := by
|
||||
rw [eventually_nhds_iff]
|
||||
rw [eventually_nhdsWithin_iff] at h₁
|
||||
sorry
|
||||
|
||||
theorem StronglyMeromorphicAt_of_makeStronglyMeromorphic
|
||||
{f : ℂ → ℂ}
|
||||
@@ -123,6 +131,26 @@ theorem StronglyMeromorphicAt_of_makeStronglyMeromorphic
|
||||
(hf : MeromorphicAt f z₀) :
|
||||
StronglyMeromorphicAt hf.makeStronglyMeromorphicAt z₀ := by
|
||||
|
||||
by_cases h₂f : hf.order = ⊤
|
||||
· rw [MeromorphicAt.order_eq_top_iff] at h₂f
|
||||
let Z : ℂ → ℂ := fun z ↦ 0
|
||||
have : hf.makeStronglyMeromorphicAt =ᶠ[𝓝 z₀] 0 := by
|
||||
--unfold Filter.EventuallyEq
|
||||
apply Mnhds
|
||||
· apply eventually_nhdsWithin_of_forall
|
||||
intro x hx
|
||||
|
||||
sorry
|
||||
|
||||
|
||||
sorry
|
||||
|
||||
|
||||
|
||||
apply AnalyticAt.stronglyMeromorphicAt
|
||||
rw [analyticAt_congr this]
|
||||
apply analyticAt_const
|
||||
|
||||
|
||||
|
||||
by_cases h₂f : hf.order = 0
|
||||
|
Reference in New Issue
Block a user