Update complexHarmonic.lean
This commit is contained in:
parent
9ac79470cd
commit
dc544308c8
|
@ -7,14 +7,49 @@ import Mathlib.Analysis.Calculus.FDeriv.Basic
|
|||
import Mathlib.Analysis.Calculus.FDeriv.Symmetric
|
||||
import Nevanlinna.cauchyRiemann
|
||||
|
||||
noncomputable def Real.partialDeriv : ℂ → (ℂ → ℂ) → (ℂ → ℂ) := by
|
||||
intro v
|
||||
intro f
|
||||
exact fun w ↦ (fderiv ℝ f w) v
|
||||
|
||||
theorem CauchyRiemann₄ {f : ℂ → ℂ} : (Differentiable ℂ f)
|
||||
→ Real.partialDeriv Complex.I f = Complex.I • Real.partialDeriv 1 f := by
|
||||
intro h
|
||||
unfold Real.partialDeriv
|
||||
|
||||
conv =>
|
||||
left
|
||||
intro w
|
||||
rw [DifferentiableAt.fderiv_restrictScalars ℝ (h w)]
|
||||
simp
|
||||
rw [← mul_one Complex.I]
|
||||
rw [← smul_eq_mul]
|
||||
rw [ContinuousLinearMap.map_smul_of_tower (fderiv ℂ f w) Complex.I 1]
|
||||
conv =>
|
||||
right
|
||||
right
|
||||
intro w
|
||||
rw [DifferentiableAt.fderiv_restrictScalars ℝ (h w)]
|
||||
|
||||
theorem partialDeriv_smul {f : ℂ → ℂ } {a v : ℂ } : Real.partialDeriv v (a • f) = a • Real.partialDeriv v f := by
|
||||
unfold Real.partialDeriv
|
||||
have : a • f = fun y ↦ a • f y := by rfl
|
||||
conv =>
|
||||
left
|
||||
intro w
|
||||
rw [this]
|
||||
rw [fderiv_const_smul]
|
||||
|
||||
|
||||
sorry
|
||||
|
||||
noncomputable def Complex.laplace : (ℂ → ℂ) → (ℂ → ℂ) := by
|
||||
intro f
|
||||
|
||||
let fx := fun w ↦ (fderiv ℝ f w) 1
|
||||
let fxx := fun w ↦ (fderiv ℝ fx w) 1
|
||||
let fy := fun w ↦ (fderiv ℝ f w) Complex.I
|
||||
let fyy := fun w ↦ (fderiv ℝ fy w) Complex.I
|
||||
exact fun z ↦ (fxx z) + (fyy z)
|
||||
let fx := Real.partialDeriv 1 f
|
||||
let fxx := Real.partialDeriv 1 fx
|
||||
let fy := Real.partialDeriv Complex.I f
|
||||
let fyy := Real.partialDeriv Complex.I fy
|
||||
exact fxx + fyy
|
||||
|
||||
|
||||
def Harmonic (f : ℂ → ℂ) : Prop :=
|
||||
|
@ -25,7 +60,7 @@ lemma derivSymm (f : ℂ → ℂ) (hf : ContDiff ℝ 2 f) :
|
|||
∀ z a b : ℂ, (fderiv ℝ (fun w => fderiv ℝ f w) z) a b = (fderiv ℝ (fun w => fderiv ℝ f w) z) b a := by
|
||||
intro z a b
|
||||
|
||||
let f' := fun w => (fderiv ℝ f w)
|
||||
let f' := fderiv ℝ f
|
||||
have h₀ : ∀ y, HasFDerivAt f (f' y) y := by
|
||||
have h : Differentiable ℝ f := by
|
||||
exact (contDiff_succ_iff_fderiv.1 hf).left
|
||||
|
@ -67,6 +102,11 @@ theorem holomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f) :
|
|||
have f'_is_differentiable : Differentiable ℝ (fderiv ℝ f) :=
|
||||
(contDiff_succ_iff_fderiv.1 f'_is_real_C1).left
|
||||
|
||||
-- Partial derivative in direction 1
|
||||
let f_1 := fun w ↦ (fderiv ℝ f w) 1
|
||||
|
||||
-- Partial derivative in direction I
|
||||
let f_I := fun w ↦ (fderiv ℝ f w) Complex.I
|
||||
|
||||
constructor
|
||||
· -- f is two times real continuously differentiable
|
||||
|
@ -76,38 +116,25 @@ theorem holomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f) :
|
|||
intro z
|
||||
unfold Complex.laplace
|
||||
|
||||
simp
|
||||
|
||||
conv =>
|
||||
left
|
||||
right
|
||||
arg 1
|
||||
arg 2
|
||||
intro z
|
||||
rw [CauchyRiemann₁ (h z)]
|
||||
rw [CauchyRiemann₄ h]
|
||||
|
||||
|
||||
have t₀ : ∀ z, DifferentiableAt ℝ (fun w ↦ (fderiv ℝ f w) 1) z := by
|
||||
intro z
|
||||
let A := f'_is_differentiable
|
||||
|
||||
have t₁a : (fderiv ℝ (fun w ↦ Complex.I * (fderiv ℝ f w) 1) z)
|
||||
= Complex.I • (fderiv ℝ f_1 z) := by
|
||||
rw [fderiv_const_mul]
|
||||
fun_prop
|
||||
|
||||
have t₁ : ∀ x, (fderiv ℝ (fun w ↦ Complex.I * (fderiv ℝ f w) 1) z) x
|
||||
= Complex.I * ((fderiv ℝ (fun w ↦ (fderiv ℝ f w) 1) z) x) := by
|
||||
intro x
|
||||
rw [fderiv_const_mul]
|
||||
simp
|
||||
exact t₀ z
|
||||
rw [t₁]
|
||||
rw [t₁a]
|
||||
|
||||
have t₂ : (fderiv ℝ (fun w => (fderiv ℝ f w) 1) z) Complex.I
|
||||
= (fderiv ℝ (fun w => (fderiv ℝ f w) Complex.I) z) 1 := by
|
||||
let A := derivSymm f f_is_real_C2 z 1 Complex.I
|
||||
let B := l₂ f_is_real_C2 z Complex.I 1
|
||||
have t₂ : (fderiv ℝ f_1 z) Complex.I = (fderiv ℝ f_I z) 1 := by
|
||||
let B := l₂ f_is_real_C2 z Complex.I 1
|
||||
rw [← B]
|
||||
let A := derivSymm f f_is_real_C2 z 1 Complex.I
|
||||
rw [A]
|
||||
let C := l₂ f_is_real_C2 z 1 Complex.I
|
||||
rw [C]
|
||||
simp
|
||||
rw [t₂]
|
||||
|
||||
conv =>
|
||||
|
@ -117,9 +144,11 @@ theorem holomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f) :
|
|||
arg 1
|
||||
arg 2
|
||||
intro z
|
||||
simp [f_I]
|
||||
rw [CauchyRiemann₁ (h z)]
|
||||
|
||||
rw [t₁a]
|
||||
|
||||
rw [t₁]
|
||||
|
||||
simp
|
||||
rw [← mul_assoc]
|
||||
simp
|
||||
|
|
Loading…
Reference in New Issue