Update analyticAt.lean
This commit is contained in:
parent
1e8c5bad0f
commit
dbeb631178
|
@ -3,12 +3,13 @@ import Mathlib.Analysis.Complex.Basic
|
||||||
import Mathlib.Analysis.Analytic.Linear
|
import Mathlib.Analysis.Analytic.Linear
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
theorem AnalyticAt.order_mul
|
theorem AnalyticAt.order_mul
|
||||||
{f₁ f₂ : ℂ → ℂ}
|
{f₁ f₂ : ℂ → ℂ}
|
||||||
{z₀ : ℂ}
|
{z₀ : ℂ}
|
||||||
(hf₁ : AnalyticAt ℂ f₁ z₀)
|
(hf₁ : AnalyticAt ℂ f₁ z₀)
|
||||||
(hf₂ : AnalyticAt ℂ f₂ z₀) :
|
(hf₂ : AnalyticAt ℂ f₂ z₀) :
|
||||||
(AnalyticAt.mul hf₁ hf₂).order = hf₁.order + hf₂.order := by
|
(hf₁.mul hf₂).order = hf₁.order + hf₂.order := by
|
||||||
by_cases h₂f₁ : hf₁.order = ⊤
|
by_cases h₂f₁ : hf₁.order = ⊤
|
||||||
· simp [h₂f₁]
|
· simp [h₂f₁]
|
||||||
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff]
|
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff]
|
||||||
|
@ -77,6 +78,22 @@ theorem AnalyticAt.order_eq_zero_iff
|
||||||
· simp
|
· simp
|
||||||
|
|
||||||
|
|
||||||
|
theorem AnalyticAt.order_pow
|
||||||
|
{f : ℂ → ℂ}
|
||||||
|
{z₀ : ℂ}
|
||||||
|
{n : ℕ}
|
||||||
|
(hf : AnalyticAt ℂ f z₀) :
|
||||||
|
(hf.pow n).order = n * hf.order := by
|
||||||
|
|
||||||
|
induction' n with n hn
|
||||||
|
· simp; rw [AnalyticAt.order_eq_zero_iff]; simp
|
||||||
|
· simp
|
||||||
|
simp_rw [add_mul, pow_add]
|
||||||
|
simp
|
||||||
|
rw [AnalyticAt.order_mul (hf.pow n) hf]
|
||||||
|
rw [hn]
|
||||||
|
|
||||||
|
|
||||||
theorem AnalyticAt.supp_order_toNat
|
theorem AnalyticAt.supp_order_toNat
|
||||||
{f : ℂ → ℂ}
|
{f : ℂ → ℂ}
|
||||||
{z₀ : ℂ}
|
{z₀ : ℂ}
|
||||||
|
@ -147,36 +164,36 @@ theorem AnalyticAt.order_comp_CLE
|
||||||
rw [AnalyticAt.order_eq_nat_iff] at hn
|
rw [AnalyticAt.order_eq_nat_iff] at hn
|
||||||
obtain ⟨g, h₁g, h₂g, h₃g⟩ := hn
|
obtain ⟨g, h₁g, h₂g, h₃g⟩ := hn
|
||||||
have A := eventually_nhds_comp_composition h₃g ℓ.continuous
|
have A := eventually_nhds_comp_composition h₃g ℓ.continuous
|
||||||
simp only [Function.comp_apply] at A
|
|
||||||
have : AnalyticAt ℂ (fun z ↦ (ℓ z - ℓ z₀) ^ n • g (ℓ z) : ℂ → ℂ) z₀ := by apply analyticAt_const
|
have : AnalyticAt ℂ (fun z ↦ (ℓ z - ℓ z₀) ^ n • g (ℓ z) : ℂ → ℂ) z₀ := by
|
||||||
|
sorry
|
||||||
rw [AnalyticAt.order_congr (hf.comp (ℓ.analyticAt z₀)) this A]
|
rw [AnalyticAt.order_congr (hf.comp (ℓ.analyticAt z₀)) this A]
|
||||||
simp
|
simp
|
||||||
rw [AnalyticAt.order_mul]
|
have t₀ : AnalyticAt ℂ (fun z => (ℓ z - ℓ z₀) ^ n) z₀ := by
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
--rw [hn, AnalyticAt.order_eq_nat_iff]
|
|
||||||
rw [AnalyticAt.order_eq_nat_iff] at hn
|
|
||||||
obtain ⟨g, h₁g, h₂g, h₃g⟩ := hn
|
|
||||||
use g ∘ ℓ
|
|
||||||
constructor
|
|
||||||
· exact h₁g.comp (ℓ.analyticAt z₀)
|
|
||||||
· constructor
|
|
||||||
· exact h₂g
|
|
||||||
· rw [eventually_nhds_iff]
|
|
||||||
rw [eventually_nhds_iff] at h₃g
|
|
||||||
obtain ⟨t, h₁t, h₂t, h₃t⟩ := h₃g
|
|
||||||
use ℓ⁻¹' t
|
|
||||||
constructor
|
|
||||||
· intro y hy
|
|
||||||
simp
|
|
||||||
rw [h₁t (ℓ y) hy]
|
|
||||||
|
|
||||||
|
|
||||||
sorry
|
sorry
|
||||||
· constructor
|
|
||||||
· apply IsOpen.preimage
|
rw [AnalyticAt.order_mul t₀ ((h₁g.comp (ℓ.analyticAt z₀)))]
|
||||||
exact ContinuousLinearEquiv.continuous ℓ
|
|
||||||
exact h₂t
|
have t₁ : AnalyticAt ℂ (fun z => ℓ z - ℓ z₀) z₀ := by
|
||||||
· exact h₃t
|
sorry
|
||||||
|
have : t₁.order = (1 : ℕ) := by
|
||||||
|
rw [AnalyticAt.order_eq_nat_iff]
|
||||||
|
use (fun z ↦ ℓ 1)
|
||||||
|
simp
|
||||||
|
constructor
|
||||||
|
· exact analyticAt_const
|
||||||
|
· apply Filter.Eventually.of_forall
|
||||||
|
intro x
|
||||||
|
sorry
|
||||||
|
|
||||||
|
have : t₀.order = n := by
|
||||||
|
rw [AnalyticAt.order_pow t₁, this]
|
||||||
|
simp
|
||||||
|
|
||||||
|
rw [this]
|
||||||
|
|
||||||
|
have : (comp h₁g (ContinuousLinearEquiv.analyticAt ℓ z₀)).order = 0 := by
|
||||||
|
rwa [AnalyticAt.order_eq_zero_iff]
|
||||||
|
rw [this]
|
||||||
|
|
||||||
|
simp
|
||||||
|
|
Loading…
Reference in New Issue