Update specialFunctions_CircleIntegral_affine.lean
This commit is contained in:
parent
77dea4115e
commit
db9ce54bcf
|
@ -51,16 +51,16 @@ lemma int₀
|
||||||
|
|
||||||
-- case: a ≠ 0
|
-- case: a ≠ 0
|
||||||
simp_rw [l₂]
|
simp_rw [l₂]
|
||||||
have {x : ℝ} : Real.log ‖1 - circleMap 0 1 (-x) * a‖ = (fun w ↦ Real.log ‖1 - circleMap 0 1 (w) * a‖) (-x) := by rfl
|
have {x : ℝ} : log ‖1 - circleMap 0 1 (-x) * a‖ = (fun w ↦ log ‖1 - circleMap 0 1 (w) * a‖) (-x) := by rfl
|
||||||
conv =>
|
conv =>
|
||||||
left
|
left
|
||||||
arg 1
|
arg 1
|
||||||
intro x
|
intro x
|
||||||
rw [this]
|
rw [this]
|
||||||
rw [intervalIntegral.integral_comp_neg ((fun w ↦ Real.log ‖1 - circleMap 0 1 (w) * a‖))]
|
rw [intervalIntegral.integral_comp_neg ((fun w ↦ log ‖1 - circleMap 0 1 (w) * a‖))]
|
||||||
|
|
||||||
let f₁ := fun w ↦ Real.log ‖1 - circleMap 0 1 w * a‖
|
let f₁ := fun w ↦ log ‖1 - circleMap 0 1 w * a‖
|
||||||
have {x : ℝ} : Real.log ‖1 - circleMap 0 1 x * a‖ = f₁ (x + 2 * Real.pi) := by
|
have {x : ℝ} : log ‖1 - circleMap 0 1 x * a‖ = f₁ (x + 2 * π) := by
|
||||||
dsimp [f₁]
|
dsimp [f₁]
|
||||||
congr 4
|
congr 4
|
||||||
let A := periodic_circleMap 0 1 x
|
let A := periodic_circleMap 0 1 x
|
||||||
|
@ -71,7 +71,7 @@ lemma int₀
|
||||||
arg 1
|
arg 1
|
||||||
intro x
|
intro x
|
||||||
rw [this]
|
rw [this]
|
||||||
rw [intervalIntegral.integral_comp_add_right f₁ (2 * Real.pi)]
|
rw [intervalIntegral.integral_comp_add_right f₁ (2 * π)]
|
||||||
simp
|
simp
|
||||||
dsimp [f₁]
|
dsimp [f₁]
|
||||||
|
|
||||||
|
@ -82,7 +82,7 @@ lemma int₀
|
||||||
· exact norm_pos_iff'.mpr h₁a
|
· exact norm_pos_iff'.mpr h₁a
|
||||||
· exact mem_ball_zero_iff.mp ha
|
· exact mem_ball_zero_iff.mp ha
|
||||||
|
|
||||||
let F := fun z ↦ Real.log ‖1 - z * a‖
|
let F := fun z ↦ log ‖1 - z * a‖
|
||||||
|
|
||||||
have hf : ∀ x ∈ Metric.ball 0 ρ, HarmonicAt F x := by
|
have hf : ∀ x ∈ Metric.ball 0 ρ, HarmonicAt F x := by
|
||||||
intro x hx
|
intro x hx
|
||||||
|
@ -105,7 +105,7 @@ lemma int₀
|
||||||
rw [← h] at this
|
rw [← h] at this
|
||||||
simp at this
|
simp at this
|
||||||
|
|
||||||
let A := harmonic_meanValue ρ 1 Real.zero_lt_one hρ hf
|
let A := harmonic_meanValue ρ 1 zero_lt_one hρ hf
|
||||||
dsimp [F] at A
|
dsimp [F] at A
|
||||||
simp at A
|
simp at A
|
||||||
exact A
|
exact A
|
||||||
|
@ -163,7 +163,7 @@ lemma logAffineHelper {x : ℝ} : log ‖circleMap 0 1 x - 1‖ = log (4 * sin (
|
||||||
_ = 2 - 2 * cos (2 * (x / 2)) := by
|
_ = 2 - 2 * cos (2 * (x / 2)) := by
|
||||||
rw [← mul_div_assoc]
|
rw [← mul_div_assoc]
|
||||||
congr; norm_num
|
congr; norm_num
|
||||||
_ = 4 - 4 * Real.cos (x / 2) ^ 2 := by
|
_ = 4 - 4 * cos (x / 2) ^ 2 := by
|
||||||
rw [cos_two_mul]
|
rw [cos_two_mul]
|
||||||
ring
|
ring
|
||||||
_ = 4 * sin (x / 2) ^ 2 := by
|
_ = 4 * sin (x / 2) ^ 2 := by
|
||||||
|
@ -172,12 +172,20 @@ lemma logAffineHelper {x : ℝ} : log ‖circleMap 0 1 x - 1‖ = log (4 * sin (
|
||||||
|
|
||||||
lemma int'₁ : -- Integrability of log ‖circleMap 0 1 x - 1‖
|
lemma int'₁ : -- Integrability of log ‖circleMap 0 1 x - 1‖
|
||||||
IntervalIntegrable (fun x ↦ log ‖circleMap 0 1 x - 1‖) volume 0 (2 * π) := by
|
IntervalIntegrable (fun x ↦ log ‖circleMap 0 1 x - 1‖) volume 0 (2 * π) := by
|
||||||
|
|
||||||
simp_rw [logAffineHelper]
|
simp_rw [logAffineHelper]
|
||||||
|
apply IntervalIntegrable.div_const
|
||||||
rw [← IntervalIntegrable.comp_mul_left_iff (c := 2) (Ne.symm (NeZero.ne' 2))]
|
rw [← IntervalIntegrable.comp_mul_left_iff (c := 2) (Ne.symm (NeZero.ne' 2))]
|
||||||
simp
|
simp
|
||||||
|
|
||||||
sorry
|
have h₁ : Set.EqOn (fun x => log (4 * sin x ^ 2)) (fun x => log 4 + 2 * log (sin x)) (Set.Ioo 0 π) := by
|
||||||
|
intro x hx
|
||||||
|
simp [log_mul (Ne.symm (NeZero.ne' 4)), log_pow, ne_of_gt (sin_pos_of_mem_Ioo hx)]
|
||||||
|
rw [IntervalIntegrable.integral_congr_Ioo pi_nonneg h₁]
|
||||||
|
apply IntervalIntegrable.add
|
||||||
|
simp
|
||||||
|
apply IntervalIntegrable.const_mul
|
||||||
|
exact intervalIntegrable_log_sin
|
||||||
|
|
||||||
lemma int₁ :
|
lemma int₁ :
|
||||||
∫ x in (0)..(2 * π), log ‖circleMap 0 1 x - 1‖ = 0 := by
|
∫ x in (0)..(2 * π), log ‖circleMap 0 1 x - 1‖ = 0 := by
|
||||||
|
@ -208,19 +216,19 @@ lemma int₁ :
|
||||||
lemma int₂
|
lemma int₂
|
||||||
{a : ℂ}
|
{a : ℂ}
|
||||||
(ha : ‖a‖ = 1) :
|
(ha : ‖a‖ = 1) :
|
||||||
∫ x in (0)..(2 * Real.pi), log ‖circleMap 0 1 x - a‖ = 0 := by
|
∫ x in (0)..(2 * π), log ‖circleMap 0 1 x - a‖ = 0 := by
|
||||||
|
|
||||||
simp_rw [l₂]
|
simp_rw [l₂]
|
||||||
have {x : ℝ} : Real.log ‖1 - circleMap 0 1 (-x) * a‖ = (fun w ↦ Real.log ‖1 - circleMap 0 1 (w) * a‖) (-x) := by rfl
|
have {x : ℝ} : log ‖1 - circleMap 0 1 (-x) * a‖ = (fun w ↦ log ‖1 - circleMap 0 1 (w) * a‖) (-x) := by rfl
|
||||||
conv =>
|
conv =>
|
||||||
left
|
left
|
||||||
arg 1
|
arg 1
|
||||||
intro x
|
intro x
|
||||||
rw [this]
|
rw [this]
|
||||||
rw [intervalIntegral.integral_comp_neg ((fun w ↦ Real.log ‖1 - circleMap 0 1 (w) * a‖))]
|
rw [intervalIntegral.integral_comp_neg ((fun w ↦ log ‖1 - circleMap 0 1 (w) * a‖))]
|
||||||
|
|
||||||
let f₁ := fun w ↦ Real.log ‖1 - circleMap 0 1 w * a‖
|
let f₁ := fun w ↦ log ‖1 - circleMap 0 1 w * a‖
|
||||||
have {x : ℝ} : Real.log ‖1 - circleMap 0 1 x * a‖ = f₁ (x + 2 * Real.pi) := by
|
have {x : ℝ} : log ‖1 - circleMap 0 1 x * a‖ = f₁ (x + 2 * π) := by
|
||||||
dsimp [f₁]
|
dsimp [f₁]
|
||||||
congr 4
|
congr 4
|
||||||
let A := periodic_circleMap 0 1 x
|
let A := periodic_circleMap 0 1 x
|
||||||
|
@ -231,7 +239,7 @@ lemma int₂
|
||||||
arg 1
|
arg 1
|
||||||
intro x
|
intro x
|
||||||
rw [this]
|
rw [this]
|
||||||
rw [intervalIntegral.integral_comp_add_right f₁ (2 * Real.pi)]
|
rw [intervalIntegral.integral_comp_add_right f₁ (2 * π)]
|
||||||
simp
|
simp
|
||||||
dsimp [f₁]
|
dsimp [f₁]
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue