Split off file
This commit is contained in:
parent
005cd10a28
commit
d5f34a3110
|
@ -12,19 +12,13 @@ import Mathlib.Analysis.RCLike.Basic
|
|||
import Mathlib.Topology.Algebra.InfiniteSum.Module
|
||||
import Mathlib.Topology.Instances.RealVectorSpace
|
||||
import Nevanlinna.cauchyRiemann
|
||||
import Nevanlinna.laplace
|
||||
import Nevanlinna.partialDeriv
|
||||
|
||||
|
||||
noncomputable def Complex.laplace : (ℂ → ℂ) → (ℂ → ℂ) := by
|
||||
intro f
|
||||
let fx := partialDeriv ℝ 1 f
|
||||
let fxx := partialDeriv ℝ 1 fx
|
||||
let fy := partialDeriv ℝ Complex.I f
|
||||
let fyy := partialDeriv ℝ Complex.I fy
|
||||
exact fxx + fyy
|
||||
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F]
|
||||
|
||||
|
||||
def Harmonic (f : ℂ → ℂ) : Prop :=
|
||||
def Harmonic (f : ℂ → F) : Prop :=
|
||||
(ContDiff ℝ 2 f) ∧ (∀ z, Complex.laplace f z = 0)
|
||||
|
||||
|
||||
|
@ -86,3 +80,10 @@ theorem holomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f) :
|
|||
exact fI_is_real_differentiable
|
||||
-- Differentiable ℝ (Real.partialDeriv 1 f)
|
||||
exact fI_is_real_differentiable
|
||||
|
||||
|
||||
theorem re_of_holomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f) :
|
||||
Harmonic (Complex.reCLM ∘ f) := by
|
||||
|
||||
|
||||
sorry
|
||||
|
|
|
@ -0,0 +1,25 @@
|
|||
import Mathlib.Data.Fin.Tuple.Basic
|
||||
import Mathlib.Analysis.Complex.Basic
|
||||
import Mathlib.Analysis.Complex.TaylorSeries
|
||||
import Mathlib.Analysis.Calculus.LineDeriv.Basic
|
||||
import Mathlib.Analysis.Calculus.ContDiff.Defs
|
||||
import Mathlib.Analysis.Calculus.FDeriv.Basic
|
||||
import Mathlib.Analysis.Calculus.FDeriv.Symmetric
|
||||
import Mathlib.Data.Complex.Module
|
||||
import Mathlib.Data.Complex.Order
|
||||
import Mathlib.Data.Complex.Exponential
|
||||
import Mathlib.Analysis.RCLike.Basic
|
||||
import Mathlib.Topology.Algebra.InfiniteSum.Module
|
||||
import Mathlib.Topology.Instances.RealVectorSpace
|
||||
import Nevanlinna.cauchyRiemann
|
||||
import Nevanlinna.partialDeriv
|
||||
|
||||
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F]
|
||||
|
||||
noncomputable def Complex.laplace : (ℂ → F) → (ℂ → F) := by
|
||||
intro f
|
||||
let fx := partialDeriv ℝ 1 f
|
||||
let fxx := partialDeriv ℝ 1 fx
|
||||
let fy := partialDeriv ℝ Complex.I f
|
||||
let fyy := partialDeriv ℝ Complex.I fy
|
||||
exact fxx + fyy
|
Loading…
Reference in New Issue