Split off file

This commit is contained in:
Stefan Kebekus 2024-05-13 09:23:08 +02:00
parent 005cd10a28
commit d5f34a3110
2 changed files with 35 additions and 9 deletions

View File

@ -12,19 +12,13 @@ import Mathlib.Analysis.RCLike.Basic
import Mathlib.Topology.Algebra.InfiniteSum.Module import Mathlib.Topology.Algebra.InfiniteSum.Module
import Mathlib.Topology.Instances.RealVectorSpace import Mathlib.Topology.Instances.RealVectorSpace
import Nevanlinna.cauchyRiemann import Nevanlinna.cauchyRiemann
import Nevanlinna.laplace
import Nevanlinna.partialDeriv import Nevanlinna.partialDeriv
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace F]
noncomputable def Complex.laplace : () → () := by
intro f
let fx := partialDeriv 1 f
let fxx := partialDeriv 1 fx
let fy := partialDeriv Complex.I f
let fyy := partialDeriv Complex.I fy
exact fxx + fyy
def Harmonic (f : ) : Prop := def Harmonic (f : → F) : Prop :=
(ContDiff 2 f) ∧ (∀ z, Complex.laplace f z = 0) (ContDiff 2 f) ∧ (∀ z, Complex.laplace f z = 0)
@ -86,3 +80,10 @@ theorem holomorphic_is_harmonic {f : } (h : Differentiable f) :
exact fI_is_real_differentiable exact fI_is_real_differentiable
-- Differentiable (Real.partialDeriv 1 f) -- Differentiable (Real.partialDeriv 1 f)
exact fI_is_real_differentiable exact fI_is_real_differentiable
theorem re_of_holomorphic_is_harmonic {f : } (h : Differentiable f) :
Harmonic (Complex.reCLM ∘ f) := by
sorry

25
Nevanlinna/laplace.lean Normal file
View File

@ -0,0 +1,25 @@
import Mathlib.Data.Fin.Tuple.Basic
import Mathlib.Analysis.Complex.Basic
import Mathlib.Analysis.Complex.TaylorSeries
import Mathlib.Analysis.Calculus.LineDeriv.Basic
import Mathlib.Analysis.Calculus.ContDiff.Defs
import Mathlib.Analysis.Calculus.FDeriv.Basic
import Mathlib.Analysis.Calculus.FDeriv.Symmetric
import Mathlib.Data.Complex.Module
import Mathlib.Data.Complex.Order
import Mathlib.Data.Complex.Exponential
import Mathlib.Analysis.RCLike.Basic
import Mathlib.Topology.Algebra.InfiniteSum.Module
import Mathlib.Topology.Instances.RealVectorSpace
import Nevanlinna.cauchyRiemann
import Nevanlinna.partialDeriv
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace F]
noncomputable def Complex.laplace : ( → F) → ( → F) := by
intro f
let fx := partialDeriv 1 f
let fxx := partialDeriv 1 fx
let fy := partialDeriv Complex.I f
let fyy := partialDeriv Complex.I fy
exact fxx + fyy