Update test.lean
This commit is contained in:
parent
72ce984d03
commit
d1de7fee33
|
@ -1,4 +1,8 @@
|
|||
import Mathlib.Analysis.Complex.CauchyIntegral
|
||||
--import Mathlib.Analysis.Complex.Module
|
||||
|
||||
|
||||
open ComplexConjugate
|
||||
|
||||
#check DiffContOnCl.circleIntegral_sub_inv_smul
|
||||
|
||||
|
@ -18,7 +22,7 @@ theorem CauchyIntegralFormula :
|
|||
#check CauchyIntegralFormula
|
||||
#check HasDerivAt.continuousAt
|
||||
#check Real.log
|
||||
#check Complex.log
|
||||
#check ComplexConjugate.conj
|
||||
#check Complex.exp
|
||||
|
||||
theorem SimpleCauchyFormula :
|
||||
|
@ -49,29 +53,52 @@ theorem JensenFormula₂ :
|
|||
{f : ℂ → ℂ}, -- Holomorphic function
|
||||
Differentiable ℂ f
|
||||
→ (∀ z ∈ Metric.ball 0 R, f z ≠ 0)
|
||||
→ (∫ (θ : ℝ) in Set.Icc 0 (2 * π), Complex.log ‖f (circleMap 0 R θ)‖ ) = 2 * π * log ‖f 0‖ := by
|
||||
→ (∫ (θ : ℝ) in Set.Icc 0 (2 * π), Complex.log ‖f (circleMap 0 R θ)‖ ) = 2 * π * Complex.log ‖f 0‖ := by
|
||||
|
||||
intro r f fHyp₁ fHyp₂
|
||||
|
||||
have : (fun θ ↦ Complex.log ↑‖f (circleMap 0 r θ)‖) = (fun θ ↦ ((deriv (circleMap 0 r) θ)) • ((deriv (circleMap 0 r) θ)⁻¹ • Complex.log ↑‖f (circleMap 0 r θ)‖)) := by
|
||||
funext θ
|
||||
rw [← smul_assoc]
|
||||
|
||||
rw [smul_eq_mul, smul_eq_mul]
|
||||
rw [mul_inv_cancel, one_mul]
|
||||
|
||||
/- We treat the trivial case r = 0 separately. -/
|
||||
by_cases rHyp : r = 0
|
||||
rw [rHyp]
|
||||
simp
|
||||
left
|
||||
unfold ENNReal.ofReal
|
||||
simp
|
||||
rw [max_eq_left (mul_nonneg zero_le_two pi_nonneg)]
|
||||
simp
|
||||
/- From hereon, we assume that r ≠ 0. -/
|
||||
|
||||
sorry
|
||||
|
||||
/- Replace the integral over 0 … 2π by a circle integral -/
|
||||
suffices (∮ (z : ℂ) in C(0, r), -(Complex.I * z⁻¹ * Complex.log ↑(Complex.abs (f z)))) = 2 * ↑π * Complex.log ↑‖f 0‖ from by
|
||||
have : ∫ (θ : ℝ) in Set.Icc 0 (2 * π), Complex.log ↑‖f (circleMap 0 r θ)‖ = (∮ (z : ℂ) in C(0, r), -(Complex.I * z⁻¹ * Complex.log ↑(Complex.abs (f z)))) := by
|
||||
have : (fun θ ↦ Complex.log ‖f (circleMap 0 r θ)‖) = (fun θ ↦ ((deriv (circleMap 0 r) θ)) • ((deriv (circleMap 0 r) θ)⁻¹ • Complex.log ↑‖f (circleMap 0 r θ)‖)) := by
|
||||
funext θ
|
||||
rw [← smul_assoc, smul_eq_mul, smul_eq_mul, mul_inv_cancel, one_mul]
|
||||
simp
|
||||
exact rHyp
|
||||
rw [this]
|
||||
simp
|
||||
let tmp := circleIntegral_def_Icc (fun z ↦ -(Complex.I * z⁻¹ * (Complex.log ↑‖f z‖))) 0 r
|
||||
simp at tmp
|
||||
rw [← tmp]
|
||||
rw [this]
|
||||
|
||||
simp
|
||||
|
||||
let XX := circleIntegral_def_Icc (fun z ↦ -(Complex.I * z⁻¹ * (Complex.log ↑‖f z‖))) 0 r
|
||||
simp at XX
|
||||
have : ∀ z : ℂ, Complex.log (Complex.abs z) = 1/2 * Complex.log z + 1/2 * Complex.log (conj z) := by
|
||||
intro z
|
||||
have : ∃ r φ : ℝ, z = r * Complex.exp (φ * Complex.I) := by
|
||||
sorry
|
||||
|
||||
obtain ⟨r, φ, h⟩ := this
|
||||
rw [h]
|
||||
|
||||
sorry
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
rw [← XX]
|
||||
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue