Working…

This commit is contained in:
Stefan Kebekus 2025-01-03 16:48:53 +01:00
parent 08e963e801
commit ce3b3d8bd1

View File

@ -377,27 +377,32 @@ theorem Nevanlinna_firstMain₂
exact t₁₁ x exact t₁₁ x
clear t₁₀ t₁₁ clear t₁₀ t₁₁
have : ‖∫ (x : ) in (0)..(2 * π), log⁺ ‖f (circleMap 0 r x)‖ - log⁺ ‖g (circleMap 0 r x)‖‖ ≤ (log⁺ ‖a‖ + log 2) * |2 * π - 0| := by have s₀ : ‖∫ (x : ) in (0)..(2 * π), log⁺ ‖f (circleMap 0 r x)‖ - log⁺ ‖g (circleMap 0 r x)‖‖ ≤ (log⁺ ‖a‖ + log 2) * |2 * π - 0| := by
apply intervalIntegral.norm_integral_le_of_norm_le_const apply intervalIntegral.norm_integral_le_of_norm_le_const
intro x hx intro x hx
exact t₂ exact t₂
clear t₂ clear t₂
simp only [norm_eq_abs, sub_zero] at this simp only [norm_eq_abs, sub_zero] at s
rw [abs_mul] rw [abs_mul]
have s₁ : |(2 * π)⁻¹| * |∫ (x : ) in (0)..(2 * π), log⁺ ‖f (circleMap 0 r x)‖ - log⁺ ‖g (circleMap 0 r x)‖| ≤ |(2 * π)⁻¹| * ((log⁺ ‖a‖ + log 2) * |2 * π|) := by
calc |(2 * π)⁻¹| * |∫ (x : ) in (0)..(2 * π), log⁺ ‖f (circleMap 0 r x)‖ - log⁺ ‖g (circleMap 0 r x)‖| apply mul_le_mul_of_nonneg_left
_ = |(2 * π)⁻¹| * ‖∫ (x : ) in (0)..(2 * π), log⁺ ‖f (circleMap 0 r x)‖ - log⁺ ‖g (circleMap 0 r x)‖‖ := by exact s₀
apply abs_nonneg
sorry have : |(2 * π)⁻¹| * ((log⁺ ‖a‖ + log 2) * |2 * π|) = log⁺ ‖a‖ + log 2 := by
_ ≤ |(2 * π)⁻¹| * ((log⁺ ‖a‖ + log 2) * |2 * π|) := by rw [mul_comm, mul_assoc]
apply? have : |2 * π| * |(2 * π)⁻¹| = 1 := by
rw [abs_mul, abs_inv, abs_mul]
sorry rw [abs_of_pos pi_pos]
_ = log⁺ ‖a‖ + log 2 := by
simp [pi_ne_zero] simp [pi_ne_zero]
-- ring_nf
simp [pi_ne_zero]
rw [this]
simp
rw [this] at s₁
assumption
--
apply MeromorphicOn.integrable_logpos_abs_f apply MeromorphicOn.integrable_logpos_abs_f
exact fun x a => h₁f x trivial exact fun x a => h₁f x trivial
-- --
@ -405,3 +410,26 @@ theorem Nevanlinna_firstMain₂
apply MeromorphicOn.sub apply MeromorphicOn.sub
exact fun x a => h₁f x trivial exact fun x a => h₁f x trivial
apply MeromorphicOn.const a apply MeromorphicOn.const a
open Asymptotics
theorem Nevanlinna_firstMain'₂
{f : }
{a : }
(h₁f : MeromorphicOn f ) :
|(h₁f.T_infty) - ((h₁f.sub (MeromorphicOn.const a)).T_infty)| =O[Filter.atTop] (1 : ) := by
rw [Asymptotics.isBigO_iff']
use logpos ‖a‖ + log 2
constructor
· apply add_pos_of_nonneg_of_pos
apply logpos_nonneg
apply log_pos one_lt_two
· rw [Filter.eventually_atTop]
use 0
intro b hb
simp only [Pi.abs_apply, Pi.sub_apply, norm_eq_abs, abs_abs, Pi.one_apply,
norm_one, mul_one]
apply Nevanlinna_firstMain₂