Create stronglyMeromorphicOn.lean
This commit is contained in:
parent
dd3384439e
commit
ccdbb319f7
|
@ -0,0 +1,175 @@
|
|||
import Nevanlinna.stronglyMeromorphicAt
|
||||
|
||||
|
||||
open Topology
|
||||
|
||||
|
||||
/- Strongly MeromorphicOn -/
|
||||
def StronglyMeromorphicOn
|
||||
(f : ℂ → ℂ)
|
||||
(U : Set ℂ) :=
|
||||
∀ z ∈ U, StronglyMeromorphicAt f z
|
||||
|
||||
|
||||
/- Strongly MeromorphicAt is Meromorphic -/
|
||||
theorem StronglyMeromorphicOn.meromorphicOn
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
(hf : StronglyMeromorphicOn f U) :
|
||||
MeromorphicOn f U := by
|
||||
intro z hz
|
||||
exact StronglyMeromorphicAt.meromorphicAt (hf z hz)
|
||||
|
||||
|
||||
/- Strongly MeromorphicOn of non-negative order is analytic -/
|
||||
theorem StronglyMeromorphicOn.analytic
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
(h₁f : StronglyMeromorphicOn f U)
|
||||
(h₂f : ∀ x, (hx : x ∈ U) → 0 ≤ (h₁f x hx).meromorphicAt.order):
|
||||
∀ z ∈ U, AnalyticAt ℂ f z := by
|
||||
intro z hz
|
||||
apply StronglyMeromorphicAt.analytic
|
||||
exact h₂f z hz
|
||||
exact h₁f z hz
|
||||
|
||||
|
||||
/- Analytic functions are strongly meromorphic -/
|
||||
theorem AnalyticOn.stronglyMeromorphicOn
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
(h₁f : AnalyticOn ℂ f U) :
|
||||
StronglyMeromorphicOn f U := by
|
||||
intro z hz
|
||||
apply AnalyticAt.stronglyMeromorphicAt
|
||||
let A := h₁f z hz
|
||||
exact h₁f z hz
|
||||
|
||||
|
||||
/- Make strongly MeromorphicAt -/
|
||||
noncomputable def MeromorphicAt.makeStronglyMeromorphicAt
|
||||
{f : ℂ → ℂ}
|
||||
{z₀ : ℂ}
|
||||
(hf : MeromorphicAt f z₀) :
|
||||
ℂ → ℂ := by
|
||||
intro z
|
||||
by_cases z = z₀
|
||||
· by_cases h₁f : hf.order = (0 : ℤ)
|
||||
· rw [hf.order_eq_int_iff] at h₁f
|
||||
exact (Classical.choose h₁f) z₀
|
||||
· exact 0
|
||||
· exact f z
|
||||
|
||||
|
||||
lemma m₁
|
||||
{f : ℂ → ℂ}
|
||||
{z₀ : ℂ}
|
||||
(hf : MeromorphicAt f z₀) :
|
||||
∀ z ≠ z₀, f z = hf.makeStronglyMeromorphicAt z := by
|
||||
intro z hz
|
||||
unfold MeromorphicAt.makeStronglyMeromorphicAt
|
||||
simp [hz]
|
||||
|
||||
|
||||
lemma m₂
|
||||
{f : ℂ → ℂ}
|
||||
{z₀ : ℂ}
|
||||
(hf : MeromorphicAt f z₀) :
|
||||
f =ᶠ[𝓝[≠] z₀] hf.makeStronglyMeromorphicAt := by
|
||||
apply eventually_nhdsWithin_of_forall
|
||||
exact fun x a => m₁ hf x a
|
||||
|
||||
|
||||
lemma Mnhds
|
||||
{f g : ℂ → ℂ}
|
||||
{z₀ : ℂ}
|
||||
(h₁ : f =ᶠ[𝓝[≠] z₀] g)
|
||||
(h₂ : f z₀ = g z₀) :
|
||||
f =ᶠ[𝓝 z₀] g := by
|
||||
apply eventually_nhds_iff.2
|
||||
obtain ⟨t, h₁t, h₂t⟩ := eventually_nhds_iff.1 (eventually_nhdsWithin_iff.1 h₁)
|
||||
use t
|
||||
constructor
|
||||
· intro y hy
|
||||
by_cases h₂y : y ∈ ({z₀}ᶜ : Set ℂ)
|
||||
· exact h₁t y hy h₂y
|
||||
· simp at h₂y
|
||||
rwa [h₂y]
|
||||
· exact h₂t
|
||||
|
||||
|
||||
theorem localIdentity
|
||||
{f g : ℂ → ℂ}
|
||||
{z₀ : ℂ}
|
||||
(hf : AnalyticAt ℂ f z₀)
|
||||
(hg : AnalyticAt ℂ g z₀) :
|
||||
f =ᶠ[𝓝[≠] z₀] g → f =ᶠ[𝓝 z₀] g := by
|
||||
intro h
|
||||
let Δ := f - g
|
||||
have : AnalyticAt ℂ Δ z₀ := AnalyticAt.sub hf hg
|
||||
have t₁ : Δ =ᶠ[𝓝[≠] z₀] 0 := by
|
||||
exact Filter.eventuallyEq_iff_sub.mp h
|
||||
|
||||
have : Δ =ᶠ[𝓝 z₀] 0 := by
|
||||
rcases (AnalyticAt.eventually_eq_zero_or_eventually_ne_zero this) with h | h
|
||||
· exact h
|
||||
· have := Filter.EventuallyEq.eventually t₁
|
||||
let A := Filter.eventually_and.2 ⟨this, h⟩
|
||||
let _ := Filter.Eventually.exists A
|
||||
tauto
|
||||
exact Filter.eventuallyEq_iff_sub.mpr this
|
||||
|
||||
|
||||
theorem StronglyMeromorphicAt_of_makeStronglyMeromorphic
|
||||
{f : ℂ → ℂ}
|
||||
{z₀ : ℂ}
|
||||
(hf : MeromorphicAt f z₀) :
|
||||
StronglyMeromorphicAt hf.makeStronglyMeromorphicAt z₀ := by
|
||||
|
||||
by_cases h₂f : hf.order = ⊤
|
||||
· have : hf.makeStronglyMeromorphicAt =ᶠ[𝓝 z₀] 0 := by
|
||||
apply Mnhds
|
||||
· apply Filter.EventuallyEq.trans (Filter.EventuallyEq.symm (m₂ hf))
|
||||
exact (MeromorphicAt.order_eq_top_iff hf).1 h₂f
|
||||
· unfold MeromorphicAt.makeStronglyMeromorphicAt
|
||||
simp [h₂f]
|
||||
|
||||
apply AnalyticAt.stronglyMeromorphicAt
|
||||
rw [analyticAt_congr this]
|
||||
apply analyticAt_const
|
||||
· let n := hf.order.untop h₂f
|
||||
have : hf.order = n := by
|
||||
exact Eq.symm (WithTop.coe_untop hf.order h₂f)
|
||||
rw [hf.order_eq_int_iff] at this
|
||||
obtain ⟨g, h₁g, h₂g, h₃g⟩ := this
|
||||
right
|
||||
use n
|
||||
use g
|
||||
constructor
|
||||
· assumption
|
||||
· constructor
|
||||
· assumption
|
||||
· apply Mnhds
|
||||
· apply Filter.EventuallyEq.trans (Filter.EventuallyEq.symm (m₂ hf))
|
||||
exact h₃g
|
||||
· unfold MeromorphicAt.makeStronglyMeromorphicAt
|
||||
simp
|
||||
by_cases h₃f : hf.order = (0 : ℤ)
|
||||
· let h₄f := (hf.order_eq_int_iff 0).1 h₃f
|
||||
simp [h₃f]
|
||||
obtain ⟨h₁G, h₂G, h₃G⟩ := Classical.choose_spec h₄f
|
||||
simp at h₃G
|
||||
have hn : n = 0 := Eq.symm ((fun {α} {a} {b} h => (WithTop.eq_untop_iff h).mpr) h₂f (id (Eq.symm h₃f)))
|
||||
rw [hn]
|
||||
rw [hn] at h₃g; simp at h₃g
|
||||
simp
|
||||
have : g =ᶠ[𝓝 z₀] (Classical.choose h₄f) := by
|
||||
apply localIdentity h₁g h₁G
|
||||
exact Filter.EventuallyEq.trans (Filter.EventuallyEq.symm h₃g) h₃G
|
||||
rw [Filter.EventuallyEq.eq_of_nhds this]
|
||||
· have : hf.order ≠ 0 := h₃f
|
||||
simp [this]
|
||||
left
|
||||
apply zero_zpow n
|
||||
dsimp [n]
|
||||
rwa [WithTop.untop_eq_iff h₂f]
|
Loading…
Reference in New Issue