Create logabs.lean
This commit is contained in:
parent
fb5bf47170
commit
cbe98c404b
|
@ -0,0 +1,56 @@
|
|||
import Mathlib.Analysis.Complex.CauchyIntegral
|
||||
open ComplexConjugate
|
||||
|
||||
/- logAbs of a product is sum of logAbs of factors -/
|
||||
|
||||
lemma logAbs_mul : ∀ z₁ z₂ : ℂ, z₁ ≠ 0 → z₂ ≠ 0 → Real.log (Complex.abs (z₁ * z₂)) = Real.log (Complex.abs z₁) + Real.log (Complex.abs z₂) := by
|
||||
intro z₁ z₂ z₁Hyp z₂Hyp
|
||||
rw [Complex.instNormedFieldComplex.proof_2 z₁ z₂]
|
||||
exact Real.log_mul ((AbsoluteValue.ne_zero_iff Complex.abs).mpr z₁Hyp) ((AbsoluteValue.ne_zero_iff Complex.abs).mpr z₂Hyp)
|
||||
|
||||
lemma absAndProd : ∀ z : ℂ, Complex.abs z = Real.sqrt ( (z * conj z).re ) := by
|
||||
intro z
|
||||
simp
|
||||
rfl
|
||||
|
||||
#check Complex.log_mul_eq_add_log_iff
|
||||
#check Complex.arg_eq_pi_iff
|
||||
|
||||
lemma logAbsXX : ∀ z : ℂ, z ≠ 0 → Real.log (Complex.abs z) = (1 / 2) * Complex.log z + (1 / 2) * Complex.log (conj z) := by
|
||||
intro z z₁Hyp
|
||||
|
||||
by_cases argHyp : Complex.arg z = Real.pi
|
||||
|
||||
-- Show pos: Complex.arg z = Real.pi
|
||||
have : conj z = z := by
|
||||
apply Complex.conj_eq_iff_im.2
|
||||
rw [Complex.arg_eq_pi_iff] at argHyp
|
||||
exact argHyp.right
|
||||
rw [this]
|
||||
sorry
|
||||
|
||||
-- Show pos: Complex.arg z ≠ Real.pi
|
||||
have t₁ : Complex.abs z = Real.sqrt (Complex.normSq z) := by
|
||||
exact rfl
|
||||
rw [t₁]
|
||||
|
||||
have t₂ : 0 ≤ Complex.normSq z := by
|
||||
exact Complex.normSq_nonneg z
|
||||
rw [ Real.log_sqrt t₂ ]
|
||||
|
||||
|
||||
have t₃ : Real.log (Complex.normSq z) = Complex.log (Complex.normSq z) := by
|
||||
apply Complex.ofReal_log
|
||||
exact t₂
|
||||
simp
|
||||
rw [t₃]
|
||||
rw [Complex.normSq_eq_conj_mul_self]
|
||||
|
||||
have : conj z ≠ 0 := by
|
||||
exact (AddEquivClass.map_ne_zero_iff starRingAut).mpr z₁Hyp
|
||||
|
||||
let XX := Complex.log_mul_eq_add_log_iff this z₁Hyp
|
||||
|
||||
|
||||
|
||||
sorry
|
Loading…
Reference in New Issue