Minor cleanup

This commit is contained in:
Stefan Kebekus 2024-07-31 09:40:35 +02:00
parent dd207b19a2
commit c9b72c89b5
2 changed files with 65 additions and 34 deletions

View File

@ -1,6 +1,7 @@
import Nevanlinna.complexHarmonic
import Nevanlinna.holomorphicAt
import Nevanlinna.holomorphic_primitive
import Nevanlinna.mathlibAddOn
theorem CauchyRiemann₆
@ -97,9 +98,11 @@ theorem CauchyRiemann₇
/-
A harmonic, real-valued function on is the real part of a suitable holomorphic function.
A harmonic, real-valued function on is the real part of a suitable holomorphic
function.
-/
@ -136,9 +139,7 @@ theorem harmonic_is_realOfHolomorphic
dsimp [g]
apply ContDiff.sub
exact reg₁f_1
have : Complex.I • f_I = fun x ↦ Complex.I • f_I x := rfl
rw [this]
apply ContDiff.const_smul
apply ContDiff.const_smul'
exact reg₁f_I
have reg₁ : Differentiable g := by
@ -181,16 +182,12 @@ theorem harmonic_is_realOfHolomorphic
-- Differentiable f_1
exact reg₁f_1.differentiable le_rfl
-- Differentiable (Complex.I • f_I)
have : Complex.I • f_I = fun x ↦ Complex.I • f_I x := rfl
rw [this]
apply Differentiable.const_smul
apply Differentiable.const_smul'
exact reg₁f_I.differentiable le_rfl
-- Differentiable f_1
exact reg₁f_1.differentiable le_rfl
-- Differentiable (Complex.I • f_I)
have : Complex.I • f_I = fun x ↦ Complex.I • f_I x := rfl
rw [this]
apply Differentiable.const_smul
apply Differentiable.const_smul'
exact reg₁f_I.differentiable le_rfl
let F := fun z ↦ (primitive 0 g) z + f 0
@ -253,4 +250,3 @@ theorem harmonic_is_realOfHolomorphic
fun_prop
-- DifferentiableAt F x
exact regF.restrictScalars x

View File

@ -0,0 +1,35 @@
import Mathlib.Analysis.Calculus.ContDiff.Basic
import Mathlib.Analysis.Calculus.FDeriv.Add
variable {𝕜 : Type*} [NontriviallyNormedField 𝕜]
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace 𝕜 F]
variable {G : Type*} [NormedAddCommGroup G] [NormedSpace 𝕜 G]
variable {G' : Type*} [NormedAddCommGroup G'] [NormedSpace 𝕜 G']
variable {f f₀ f₁ g : E → F}
variable {f' f₀' f₁' g' : E →L[𝕜] F}
variable (e : E →L[𝕜] F)
variable {x : E}
variable {s t : Set E}
variable {L L₁ L₂ : Filter E}
variable {R : Type*} [Semiring R] [Module R F] [SMulCommClass 𝕜 R F] [ContinuousConstSMul R F]
-- import Mathlib.Analysis.Calculus.FDeriv.Add
@[fun_prop]
theorem Differentiable.const_smul' (h : Differentiable 𝕜 f) (c : R) :
Differentiable 𝕜 (c • f) := by
have : c • f = fun x ↦ c • f x := rfl
rw [this]
exact Differentiable.const_smul h c
-- Mathlib.Analysis.Calculus.ContDiff.Basic
theorem ContDiff.const_smul' {f : E → F} (c : R) (hf : ContDiff 𝕜 n f) :
ContDiff 𝕜 n (c • f) := by
have : c • f = fun x ↦ c • f x := rfl
rw [this]
exact ContDiff.const_smul c hf