Minor cleanup
This commit is contained in:
parent
dd207b19a2
commit
c9b72c89b5
|
@ -1,6 +1,7 @@
|
|||
import Nevanlinna.complexHarmonic
|
||||
import Nevanlinna.holomorphicAt
|
||||
import Nevanlinna.holomorphic_primitive
|
||||
import Nevanlinna.mathlibAddOn
|
||||
|
||||
|
||||
theorem CauchyRiemann₆
|
||||
|
@ -97,9 +98,11 @@ theorem CauchyRiemann₇
|
|||
|
||||
|
||||
|
||||
|
||||
/-
|
||||
|
||||
A harmonic, real-valued function on ℂ is the real part of a suitable holomorphic function.
|
||||
A harmonic, real-valued function on ℂ is the real part of a suitable holomorphic
|
||||
function.
|
||||
|
||||
-/
|
||||
|
||||
|
@ -136,9 +139,7 @@ theorem harmonic_is_realOfHolomorphic
|
|||
dsimp [g]
|
||||
apply ContDiff.sub
|
||||
exact reg₁f_1
|
||||
have : Complex.I • f_I = fun x ↦ Complex.I • f_I x := rfl
|
||||
rw [this]
|
||||
apply ContDiff.const_smul
|
||||
apply ContDiff.const_smul'
|
||||
exact reg₁f_I
|
||||
|
||||
have reg₁ : Differentiable ℂ g := by
|
||||
|
@ -181,16 +182,12 @@ theorem harmonic_is_realOfHolomorphic
|
|||
-- Differentiable ℝ f_1
|
||||
exact reg₁f_1.differentiable le_rfl
|
||||
-- Differentiable ℝ (Complex.I • f_I)
|
||||
have : Complex.I • f_I = fun x ↦ Complex.I • f_I x := rfl
|
||||
rw [this]
|
||||
apply Differentiable.const_smul
|
||||
apply Differentiable.const_smul'
|
||||
exact reg₁f_I.differentiable le_rfl
|
||||
-- Differentiable ℝ f_1
|
||||
exact reg₁f_1.differentiable le_rfl
|
||||
-- Differentiable ℝ (Complex.I • f_I)
|
||||
have : Complex.I • f_I = fun x ↦ Complex.I • f_I x := rfl
|
||||
rw [this]
|
||||
apply Differentiable.const_smul
|
||||
apply Differentiable.const_smul'
|
||||
exact reg₁f_I.differentiable le_rfl
|
||||
|
||||
let F := fun z ↦ (primitive 0 g) z + f 0
|
||||
|
@ -253,4 +250,3 @@ theorem harmonic_is_realOfHolomorphic
|
|||
fun_prop
|
||||
-- DifferentiableAt ℝ F x
|
||||
exact regF.restrictScalars ℝ x
|
||||
|
||||
|
|
|
@ -0,0 +1,35 @@
|
|||
import Mathlib.Analysis.Calculus.ContDiff.Basic
|
||||
import Mathlib.Analysis.Calculus.FDeriv.Add
|
||||
|
||||
variable {𝕜 : Type*} [NontriviallyNormedField 𝕜]
|
||||
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
|
||||
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace 𝕜 F]
|
||||
variable {G : Type*} [NormedAddCommGroup G] [NormedSpace 𝕜 G]
|
||||
variable {G' : Type*} [NormedAddCommGroup G'] [NormedSpace 𝕜 G']
|
||||
variable {f f₀ f₁ g : E → F}
|
||||
variable {f' f₀' f₁' g' : E →L[𝕜] F}
|
||||
variable (e : E →L[𝕜] F)
|
||||
variable {x : E}
|
||||
variable {s t : Set E}
|
||||
variable {L L₁ L₂ : Filter E}
|
||||
|
||||
variable {R : Type*} [Semiring R] [Module R F] [SMulCommClass 𝕜 R F] [ContinuousConstSMul R F]
|
||||
|
||||
|
||||
-- import Mathlib.Analysis.Calculus.FDeriv.Add
|
||||
|
||||
@[fun_prop]
|
||||
theorem Differentiable.const_smul' (h : Differentiable 𝕜 f) (c : R) :
|
||||
Differentiable 𝕜 (c • f) := by
|
||||
have : c • f = fun x ↦ c • f x := rfl
|
||||
rw [this]
|
||||
exact Differentiable.const_smul h c
|
||||
|
||||
|
||||
-- Mathlib.Analysis.Calculus.ContDiff.Basic
|
||||
|
||||
theorem ContDiff.const_smul' {f : E → F} (c : R) (hf : ContDiff 𝕜 n f) :
|
||||
ContDiff 𝕜 n (c • f) := by
|
||||
have : c • f = fun x ↦ c • f x := rfl
|
||||
rw [this]
|
||||
exact ContDiff.const_smul c hf
|
Loading…
Reference in New Issue