diff --git a/Nevanlinna/complexHarmonic.lean b/Nevanlinna/complexHarmonic.lean index 81a70a5..12f91c5 100644 --- a/Nevanlinna/complexHarmonic.lean +++ b/Nevanlinna/complexHarmonic.lean @@ -57,8 +57,13 @@ theorem HarmonicOn_congr {f₁ f₂ : ℂ → F} {s : Set ℂ} (hs : IsOpen s) ( unfold Filter.EventuallyEq unfold Filter.Eventually simp - apply? - sorry + refine mem_nhds_iff.mpr ?_ + use s + constructor + · exact hf₁₂ + · constructor + · exact hs + · exact hz rw [← laplace_eventuallyEq this] exact h₁.2 z hz · intro h₁ @@ -67,7 +72,17 @@ theorem HarmonicOn_congr {f₁ f₂ : ℂ → F} {s : Set ℂ} (hs : IsOpen s) ( intro x hx exact hf₁₂ x hx · intro z hz - have : f₁ =ᶠ[nhds z] f₂ := by sorry + have : f₁ =ᶠ[nhds z] f₂ := by + unfold Filter.EventuallyEq + unfold Filter.Eventually + simp + refine mem_nhds_iff.mpr ?_ + use s + constructor + · exact hf₁₂ + · constructor + · exact hs + · exact hz rw [laplace_eventuallyEq this] exact h₁.2 z hz @@ -83,6 +98,17 @@ theorem harmonic_add_harmonic_is_harmonic {f₁ f₂ : ℂ → F} (h₁ : Harmon simp +theorem harmonicOn_add_harmonicOn_is_harmonicOn {f₁ f₂ : ℂ → F} {s : Set ℂ} (hs : IsOpen s) (h₁ : HarmonicOn f₁ s) (h₂ : HarmonicOn f₂ s) : + HarmonicOn (f₁ + f₂) s := by + constructor + · exact ContDiffOn.add h₁.1 h₂.1 + · rw [laplace_add h₁.1 h₂.1] + simp + intro z + rw [h₁.2 z, h₂.2 z] + simp + + theorem harmonic_smul_const_is_harmonic {f : ℂ → F} {c : ℝ} (h : Harmonic f) : Harmonic (c • f) := by constructor @@ -268,7 +294,8 @@ theorem log_normSq_of_holomorphicOn_is_harmonicOn · exact Real.pi_nonneg exact (AddEquivClass.map_ne_zero_iff starRingAut).mpr (h₂ z hz) exact h₂ z hz - rw [HarmonicOn_ext this] + + rw [HarmonicOn_congr hs this] simp apply harmonic_add_harmonic_is_harmonic diff --git a/Nevanlinna/laplace.lean b/Nevanlinna/laplace.lean index b62f6e8..46fdad8 100644 --- a/Nevanlinna/laplace.lean +++ b/Nevanlinna/laplace.lean @@ -31,7 +31,7 @@ theorem laplace_eventuallyEq {f₁ f₂ : ℂ → F} {x : ℂ} (h : f₁ =ᶠ[nh rw [partialDeriv_eventuallyEq ℝ (partialDeriv_eventuallyEq' ℝ h Complex.I) Complex.I] -theorem laplace_add {f₁ f₂ : ℂ → F} (h₁ : ContDiff ℝ 2 f₁) (h₂ : ContDiff ℝ 2 f₂): Complex.laplace (f₁ + f₂) = (Complex.laplace f₁) + (Complex.laplace f₂) := by +theorem laplace_add {f₁ f₂ : ℂ → F} (h₁ : ContDiff ℝ 2 f₁) (h₂ : ContDiff ℝ 2 f₂): Complex.laplace (f₁ + f₂) = (Complex.laplace f₁) + (Complex.laplace f₂) := by unfold Complex.laplace rw [partialDeriv_add₂] rw [partialDeriv_add₂] @@ -53,6 +53,37 @@ theorem laplace_add {f₁ f₂ : ℂ → F} (h₁ : ContDiff ℝ 2 f₁) (h₂ exact h₂.differentiable one_le_two +theorem laplace_add_ContDiffOn {f₁ f₂ : ℂ → F} {s : Set ℂ} (hs : IsOpen s) (h₁ : ContDiffOn ℝ 2 f₁ s) (h₂ : ContDiffOn ℝ 2 f₂ s): ∀ x ∈ s, Complex.laplace (f₁ + f₂) x = (Complex.laplace f₁) x + (Complex.laplace f₂) x := by + + unfold Complex.laplace + simp + intro x hx + have : partialDeriv ℝ 1 (f₁ + f₂) =ᶠ[nhds x] (partialDeriv ℝ 1 f₁) + (partialDeriv ℝ 1 f₂) := by + sorry + rw [partialDeriv_eventuallyEq ℝ this] + + + rw [partialDeriv_add₂] + + rw [partialDeriv_add₂] + rw [partialDeriv_add₂] + rw [partialDeriv_add₂] + exact + add_add_add_comm (partialDeriv ℝ 1 (partialDeriv ℝ 1 f₁)) + (partialDeriv ℝ 1 (partialDeriv ℝ 1 f₂)) + (partialDeriv ℝ Complex.I (partialDeriv ℝ Complex.I f₁)) + (partialDeriv ℝ Complex.I (partialDeriv ℝ Complex.I f₂)) + + exact (partialDeriv_contDiff ℝ h₁ Complex.I).differentiable le_rfl + exact (partialDeriv_contDiff ℝ h₂ Complex.I).differentiable le_rfl + exact h₁.differentiable one_le_two + exact h₂.differentiable one_le_two + exact (partialDeriv_contDiff ℝ h₁ 1).differentiable le_rfl + exact (partialDeriv_contDiff ℝ h₂ 1).differentiable le_rfl + exact h₁.differentiable one_le_two + exact h₂.differentiable one_le_two + + theorem laplace_smul {f : ℂ → F} (h : ContDiff ℝ 2 f) : ∀ v : ℝ, Complex.laplace (v • f) = v • (Complex.laplace f) := by intro v unfold Complex.laplace diff --git a/Nevanlinna/partialDeriv.lean b/Nevanlinna/partialDeriv.lean index 9cddc27..e5fe2fe 100644 --- a/Nevanlinna/partialDeriv.lean +++ b/Nevanlinna/partialDeriv.lean @@ -42,7 +42,7 @@ theorem partialDeriv_smul₂ {f : E → F} {a : 𝕜} {v : E} (h : Differentiabl rw [fderiv_const_smul (h w)] -theorem partialDeriv_add₂ {f₁ f₂ : E → F} {v : E} (h₁ : Differentiable 𝕜 f₁) (h₂ : Differentiable 𝕜 f₂) : partialDeriv 𝕜 v (f₁ + f₂) = (partialDeriv 𝕜 v f₁) + (partialDeriv 𝕜 v f₂) := by +theorem partialDeriv_add₂ {f₁ f₂ : E → F} {v : E} (h₁ : Differentiable 𝕜 f₁) (h₂ : Differentiable 𝕜 f₂) : partialDeriv 𝕜 v (f₁ + f₂) = (partialDeriv 𝕜 v f₁) + (partialDeriv 𝕜 v f₂) := by unfold partialDeriv have : f₁ + f₂ = fun y ↦ f₁ y + f₂ y := by rfl