Implementing…
This commit is contained in:
parent
3b2d1434f7
commit
c7a3804b0c
@ -7,49 +7,61 @@ open Real
|
||||
|
||||
|
||||
-- Lang p. 164
|
||||
|
||||
theorem MeromorphicOn.restrict
|
||||
{f : ℂ → ℂ}
|
||||
(h₁f : MeromorphicOn f ⊤)
|
||||
(r : ℝ) :
|
||||
MeromorphicOn f (Metric.closedBall 0 r) := by
|
||||
exact fun x a => h₁f x trivial
|
||||
|
||||
noncomputable def MeromorphicOn.N_zero
|
||||
{f : ℂ → ℂ}
|
||||
(h₁f : MeromorphicOn f ⊤) :
|
||||
(hf : MeromorphicOn f ⊤) :
|
||||
ℝ → ℝ :=
|
||||
fun r ↦ ∑ᶠ z ∈ Metric.closedBall (0 : ℂ) r, (max 0 (h₁f.divisor z)) * log (r * ‖z‖⁻¹)
|
||||
fun r ↦ ∑ᶠ z, (max 0 ((hf.restrict r).divisor z)) * log (r * ‖z‖⁻¹)
|
||||
|
||||
noncomputable def MeromorphicOn.N_infty
|
||||
{f : ℂ → ℂ}
|
||||
(h₁f : MeromorphicOn f ⊤) :
|
||||
(hf : MeromorphicOn f ⊤) :
|
||||
ℝ → ℝ :=
|
||||
fun r ↦ ∑ᶠ z ∈ Metric.closedBall (0 : ℂ) r, (max 0 (-(h₁f.divisor z))) * log (r * ‖z‖⁻¹)
|
||||
fun r ↦ ∑ᶠ z, (max 0 (-((hf.restrict r).divisor z))) * log (r * ‖z‖⁻¹)
|
||||
|
||||
theorem Nevanlinna_counting
|
||||
{f : ℂ → ℂ}
|
||||
(h₁f : MeromorphicOn f ⊤) :
|
||||
h₁f.N_zero - h₁f.N_infty = fun r ↦ ∑ᶠ z ∈ Metric.closedBall (0 : ℂ) r, (h₁f.divisor z) * log (r * ‖z‖⁻¹) := by
|
||||
(hf : MeromorphicOn f ⊤) :
|
||||
hf.N_zero - hf.N_infty = fun r ↦ ∑ᶠ z, ((hf.restrict r).divisor z) * log (r * ‖z‖⁻¹) := by
|
||||
|
||||
funext r
|
||||
simp only [Pi.sub_apply]
|
||||
unfold MeromorphicOn.N_zero MeromorphicOn.N_infty
|
||||
|
||||
rw [finsum_eq_sum]
|
||||
sorry
|
||||
|
||||
have h₁fr : MeromorphicOn f (Metric.ball (0 : ℂ) r) := by
|
||||
sorry
|
||||
|
||||
let Sr :=
|
||||
|
||||
rw [finsum_eq_sum_of_support_subset _ h₄f]
|
||||
|
||||
|
||||
have h₂U : IsCompact (Metric.closedBall (0 : ℂ) R) :=
|
||||
isCompact_closedBall 0 R
|
||||
|
||||
have h'₂f : ∃ u : (Metric.closedBall (0 : ℂ) R), f u ≠ 0 := by
|
||||
use ⟨0, Metric.mem_closedBall_self (le_of_lt hR)⟩
|
||||
|
||||
have h₃f : Set.Finite (Function.support h₁f.divisor) := by
|
||||
exact Divisor.finiteSupport h₂U (StronglyMeromorphicOn.meromorphicOn h₁f).divisor
|
||||
|
||||
sorry
|
||||
|
||||
--
|
||||
let A := (hf.restrict r).divisor.finiteSupport (isCompact_closedBall 0 r)
|
||||
repeat
|
||||
rw [finsum_eq_sum_of_support_subset (s := A.toFinset)]
|
||||
rw [← Finset.sum_sub_distrib]
|
||||
simp_rw [← sub_mul]
|
||||
congr
|
||||
funext x
|
||||
congr
|
||||
by_cases h : 0 ≤ (hf.restrict r).divisor x
|
||||
· simp [h]
|
||||
· have h' : 0 ≤ -((hf.restrict r).divisor x) := by
|
||||
simp at h
|
||||
apply Int.le_neg_of_le_neg
|
||||
simp
|
||||
exact Int.le_of_lt h
|
||||
simp at h
|
||||
simp [h']
|
||||
linarith
|
||||
--
|
||||
repeat
|
||||
intro x
|
||||
contrapose
|
||||
simp
|
||||
intro hx
|
||||
rw [hx]
|
||||
tauto
|
||||
|
||||
noncomputable def logpos : ℝ → ℝ := fun r ↦ max 0 (log r)
|
||||
|
||||
@ -67,7 +79,7 @@ theorem loglogpos {r : ℝ} : log r = logpos r - logpos r⁻¹ := by
|
||||
|
||||
noncomputable def MeromorphicOn.m_infty
|
||||
{f : ℂ → ℂ}
|
||||
(h₁f : MeromorphicOn f ⊤) :
|
||||
(_ : MeromorphicOn f ⊤) :
|
||||
ℝ → ℝ :=
|
||||
fun r ↦ (2 * π)⁻¹ * ∫ x in (0)..(2 * π), logpos ‖f (circleMap 0 r x)‖
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user