Implementing…

This commit is contained in:
Stefan Kebekus 2024-12-09 19:58:56 +01:00
parent 3b2d1434f7
commit c7a3804b0c

View File

@ -7,49 +7,61 @@ open Real
-- Lang p. 164
theorem MeromorphicOn.restrict
{f : }
(h₁f : MeromorphicOn f )
(r : ) :
MeromorphicOn f (Metric.closedBall 0 r) := by
exact fun x a => h₁f x trivial
noncomputable def MeromorphicOn.N_zero
{f : }
(h₁f : MeromorphicOn f ) :
(hf : MeromorphicOn f ) :
:=
fun r ↦ ∑ᶠ z ∈ Metric.closedBall (0 : ) r, (max 0 (h₁f.divisor z)) * log (r * ‖z‖⁻¹)
fun r ↦ ∑ᶠ z, (max 0 ((hf.restrict r).divisor z)) * log (r * ‖z‖⁻¹)
noncomputable def MeromorphicOn.N_infty
{f : }
(hf : MeromorphicOn f ) :
(hf : MeromorphicOn f ) :
:=
fun r ↦ ∑ᶠ z ∈ Metric.closedBall (0 : ) r, (max 0 (-(hf.divisor z))) * log (r * ‖z‖⁻¹)
fun r ↦ ∑ᶠ z, (max 0 (-((hf.restrict r).divisor z))) * log (r * ‖z‖⁻¹)
theorem Nevanlinna_counting
{f : }
(hf : MeromorphicOn f ) :
h₁f.N_zero - h₁f.N_infty = fun r ↦ ∑ᶠ z ∈ Metric.closedBall (0 : ) r, (h₁f.divisor z) * log (r * ‖z‖⁻¹) := by
(hf : MeromorphicOn f ) :
hf.N_zero - hf.N_infty = fun r ↦ ∑ᶠ z, ((hf.restrict r).divisor z) * log (r * ‖z‖⁻¹) := by
funext r
simp only [Pi.sub_apply]
unfold MeromorphicOn.N_zero MeromorphicOn.N_infty
rw [finsum_eq_sum]
sorry
have h₁fr : MeromorphicOn f (Metric.ball (0 : ) r) := by
sorry
let Sr :=
rw [finsum_eq_sum_of_support_subset _ h₄f]
have h₂U : IsCompact (Metric.closedBall (0 : ) R) :=
isCompact_closedBall 0 R
have h'₂f : ∃ u : (Metric.closedBall (0 : ) R), f u ≠ 0 := by
use ⟨0, Metric.mem_closedBall_self (le_of_lt hR)⟩
have h₃f : Set.Finite (Function.support h₁f.divisor) := by
exact Divisor.finiteSupport h₂U (StronglyMeromorphicOn.meromorphicOn h₁f).divisor
sorry
--
let A := (hf.restrict r).divisor.finiteSupport (isCompact_closedBall 0 r)
repeat
rw [finsum_eq_sum_of_support_subset (s := A.toFinset)]
rw [← Finset.sum_sub_distrib]
simp_rw [← sub_mul]
congr
funext x
congr
by_cases h : 0 ≤ (hf.restrict r).divisor x
· simp [h]
· have h' : 0 ≤ -((hf.restrict r).divisor x) := by
simp at h
apply Int.le_neg_of_le_neg
simp
exact Int.le_of_lt h
simp at h
simp [h']
linarith
--
repeat
intro x
contrapose
simp
intro hx
rw [hx]
tauto
noncomputable def logpos : := fun r ↦ max 0 (log r)
@ -67,7 +79,7 @@ theorem loglogpos {r : } : log r = logpos r - logpos r⁻¹ := by
noncomputable def MeromorphicOn.m_infty
{f : }
(h₁f : MeromorphicOn f ) :
(_ : MeromorphicOn f ) :
:=
fun r ↦ (2 * π)⁻¹ * ∫ x in (0)..(2 * π), logpos ‖f (circleMap 0 r x)‖