Implementing…
This commit is contained in:
parent
3b2d1434f7
commit
c7a3804b0c
@ -7,49 +7,61 @@ open Real
|
|||||||
|
|
||||||
|
|
||||||
-- Lang p. 164
|
-- Lang p. 164
|
||||||
|
|
||||||
|
theorem MeromorphicOn.restrict
|
||||||
|
{f : ℂ → ℂ}
|
||||||
|
(h₁f : MeromorphicOn f ⊤)
|
||||||
|
(r : ℝ) :
|
||||||
|
MeromorphicOn f (Metric.closedBall 0 r) := by
|
||||||
|
exact fun x a => h₁f x trivial
|
||||||
|
|
||||||
noncomputable def MeromorphicOn.N_zero
|
noncomputable def MeromorphicOn.N_zero
|
||||||
{f : ℂ → ℂ}
|
{f : ℂ → ℂ}
|
||||||
(h₁f : MeromorphicOn f ⊤) :
|
(hf : MeromorphicOn f ⊤) :
|
||||||
ℝ → ℝ :=
|
ℝ → ℝ :=
|
||||||
fun r ↦ ∑ᶠ z ∈ Metric.closedBall (0 : ℂ) r, (max 0 (h₁f.divisor z)) * log (r * ‖z‖⁻¹)
|
fun r ↦ ∑ᶠ z, (max 0 ((hf.restrict r).divisor z)) * log (r * ‖z‖⁻¹)
|
||||||
|
|
||||||
noncomputable def MeromorphicOn.N_infty
|
noncomputable def MeromorphicOn.N_infty
|
||||||
{f : ℂ → ℂ}
|
{f : ℂ → ℂ}
|
||||||
(h₁f : MeromorphicOn f ⊤) :
|
(hf : MeromorphicOn f ⊤) :
|
||||||
ℝ → ℝ :=
|
ℝ → ℝ :=
|
||||||
fun r ↦ ∑ᶠ z ∈ Metric.closedBall (0 : ℂ) r, (max 0 (-(h₁f.divisor z))) * log (r * ‖z‖⁻¹)
|
fun r ↦ ∑ᶠ z, (max 0 (-((hf.restrict r).divisor z))) * log (r * ‖z‖⁻¹)
|
||||||
|
|
||||||
theorem Nevanlinna_counting
|
theorem Nevanlinna_counting
|
||||||
{f : ℂ → ℂ}
|
{f : ℂ → ℂ}
|
||||||
(h₁f : MeromorphicOn f ⊤) :
|
(hf : MeromorphicOn f ⊤) :
|
||||||
h₁f.N_zero - h₁f.N_infty = fun r ↦ ∑ᶠ z ∈ Metric.closedBall (0 : ℂ) r, (h₁f.divisor z) * log (r * ‖z‖⁻¹) := by
|
hf.N_zero - hf.N_infty = fun r ↦ ∑ᶠ z, ((hf.restrict r).divisor z) * log (r * ‖z‖⁻¹) := by
|
||||||
|
|
||||||
funext r
|
funext r
|
||||||
simp only [Pi.sub_apply]
|
simp only [Pi.sub_apply]
|
||||||
|
unfold MeromorphicOn.N_zero MeromorphicOn.N_infty
|
||||||
|
|
||||||
rw [finsum_eq_sum]
|
let A := (hf.restrict r).divisor.finiteSupport (isCompact_closedBall 0 r)
|
||||||
sorry
|
repeat
|
||||||
|
rw [finsum_eq_sum_of_support_subset (s := A.toFinset)]
|
||||||
have h₁fr : MeromorphicOn f (Metric.ball (0 : ℂ) r) := by
|
rw [← Finset.sum_sub_distrib]
|
||||||
sorry
|
simp_rw [← sub_mul]
|
||||||
|
congr
|
||||||
let Sr :=
|
funext x
|
||||||
|
congr
|
||||||
rw [finsum_eq_sum_of_support_subset _ h₄f]
|
by_cases h : 0 ≤ (hf.restrict r).divisor x
|
||||||
|
· simp [h]
|
||||||
|
· have h' : 0 ≤ -((hf.restrict r).divisor x) := by
|
||||||
have h₂U : IsCompact (Metric.closedBall (0 : ℂ) R) :=
|
simp at h
|
||||||
isCompact_closedBall 0 R
|
apply Int.le_neg_of_le_neg
|
||||||
|
simp
|
||||||
have h'₂f : ∃ u : (Metric.closedBall (0 : ℂ) R), f u ≠ 0 := by
|
exact Int.le_of_lt h
|
||||||
use ⟨0, Metric.mem_closedBall_self (le_of_lt hR)⟩
|
simp at h
|
||||||
|
simp [h']
|
||||||
have h₃f : Set.Finite (Function.support h₁f.divisor) := by
|
linarith
|
||||||
exact Divisor.finiteSupport h₂U (StronglyMeromorphicOn.meromorphicOn h₁f).divisor
|
--
|
||||||
|
repeat
|
||||||
sorry
|
intro x
|
||||||
|
contrapose
|
||||||
--
|
simp
|
||||||
|
intro hx
|
||||||
|
rw [hx]
|
||||||
|
tauto
|
||||||
|
|
||||||
noncomputable def logpos : ℝ → ℝ := fun r ↦ max 0 (log r)
|
noncomputable def logpos : ℝ → ℝ := fun r ↦ max 0 (log r)
|
||||||
|
|
||||||
@ -67,7 +79,7 @@ theorem loglogpos {r : ℝ} : log r = logpos r - logpos r⁻¹ := by
|
|||||||
|
|
||||||
noncomputable def MeromorphicOn.m_infty
|
noncomputable def MeromorphicOn.m_infty
|
||||||
{f : ℂ → ℂ}
|
{f : ℂ → ℂ}
|
||||||
(h₁f : MeromorphicOn f ⊤) :
|
(_ : MeromorphicOn f ⊤) :
|
||||||
ℝ → ℝ :=
|
ℝ → ℝ :=
|
||||||
fun r ↦ (2 * π)⁻¹ * ∫ x in (0)..(2 * π), logpos ‖f (circleMap 0 r x)‖
|
fun r ↦ (2 * π)⁻¹ * ∫ x in (0)..(2 * π), logpos ‖f (circleMap 0 r x)‖
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user