Implementing…

This commit is contained in:
Stefan Kebekus 2024-12-09 19:58:56 +01:00
parent 3b2d1434f7
commit c7a3804b0c

View File

@ -7,49 +7,61 @@ open Real
-- Lang p. 164 -- Lang p. 164
theorem MeromorphicOn.restrict
{f : }
(h₁f : MeromorphicOn f )
(r : ) :
MeromorphicOn f (Metric.closedBall 0 r) := by
exact fun x a => h₁f x trivial
noncomputable def MeromorphicOn.N_zero noncomputable def MeromorphicOn.N_zero
{f : } {f : }
(h₁f : MeromorphicOn f ) : (hf : MeromorphicOn f ) :
:= :=
fun r ↦ ∑ᶠ z ∈ Metric.closedBall (0 : ) r, (max 0 (h₁f.divisor z)) * log (r * ‖z‖⁻¹) fun r ↦ ∑ᶠ z, (max 0 ((hf.restrict r).divisor z)) * log (r * ‖z‖⁻¹)
noncomputable def MeromorphicOn.N_infty noncomputable def MeromorphicOn.N_infty
{f : } {f : }
(hf : MeromorphicOn f ) : (hf : MeromorphicOn f ) :
:= :=
fun r ↦ ∑ᶠ z ∈ Metric.closedBall (0 : ) r, (max 0 (-(hf.divisor z))) * log (r * ‖z‖⁻¹) fun r ↦ ∑ᶠ z, (max 0 (-((hf.restrict r).divisor z))) * log (r * ‖z‖⁻¹)
theorem Nevanlinna_counting theorem Nevanlinna_counting
{f : } {f : }
(hf : MeromorphicOn f ) : (hf : MeromorphicOn f ) :
h₁f.N_zero - h₁f.N_infty = fun r ↦ ∑ᶠ z ∈ Metric.closedBall (0 : ) r, (h₁f.divisor z) * log (r * ‖z‖⁻¹) := by hf.N_zero - hf.N_infty = fun r ↦ ∑ᶠ z, ((hf.restrict r).divisor z) * log (r * ‖z‖⁻¹) := by
funext r funext r
simp only [Pi.sub_apply] simp only [Pi.sub_apply]
unfold MeromorphicOn.N_zero MeromorphicOn.N_infty
rw [finsum_eq_sum] let A := (hf.restrict r).divisor.finiteSupport (isCompact_closedBall 0 r)
sorry repeat
rw [finsum_eq_sum_of_support_subset (s := A.toFinset)]
have h₁fr : MeromorphicOn f (Metric.ball (0 : ) r) := by rw [← Finset.sum_sub_distrib]
sorry simp_rw [← sub_mul]
congr
let Sr := funext x
congr
rw [finsum_eq_sum_of_support_subset _ h₄f] by_cases h : 0 ≤ (hf.restrict r).divisor x
· simp [h]
· have h' : 0 ≤ -((hf.restrict r).divisor x) := by
have h₂U : IsCompact (Metric.closedBall (0 : ) R) := simp at h
isCompact_closedBall 0 R apply Int.le_neg_of_le_neg
simp
have h'₂f : ∃ u : (Metric.closedBall (0 : ) R), f u ≠ 0 := by exact Int.le_of_lt h
use ⟨0, Metric.mem_closedBall_self (le_of_lt hR)⟩ simp at h
simp [h']
have h₃f : Set.Finite (Function.support h₁f.divisor) := by linarith
exact Divisor.finiteSupport h₂U (StronglyMeromorphicOn.meromorphicOn h₁f).divisor
sorry
-- --
repeat
intro x
contrapose
simp
intro hx
rw [hx]
tauto
noncomputable def logpos : := fun r ↦ max 0 (log r) noncomputable def logpos : := fun r ↦ max 0 (log r)
@ -67,7 +79,7 @@ theorem loglogpos {r : } : log r = logpos r - logpos r⁻¹ := by
noncomputable def MeromorphicOn.m_infty noncomputable def MeromorphicOn.m_infty
{f : } {f : }
(h₁f : MeromorphicOn f ) : (_ : MeromorphicOn f ) :
:= :=
fun r ↦ (2 * π)⁻¹ * ∫ x in (0)..(2 * π), logpos ‖f (circleMap 0 r x)‖ fun r ↦ (2 * π)⁻¹ * ∫ x in (0)..(2 * π), logpos ‖f (circleMap 0 r x)‖