Implementing...
This commit is contained in:
parent
7893050455
commit
c6caffc53d
|
@ -72,3 +72,20 @@ lemma Mnhds
|
|||
· simp at h₂y
|
||||
rwa [h₂y]
|
||||
· exact h₂t
|
||||
|
||||
-- unclear where this should go
|
||||
|
||||
lemma WithTopCoe
|
||||
{n : WithTop ℕ} :
|
||||
WithTop.map (Nat.cast : ℕ → ℤ) n = 0 → n = 0 := by
|
||||
rcases n with h|h
|
||||
· intro h
|
||||
contradiction
|
||||
· intro h₁
|
||||
simp only [WithTop.map, Option.map] at h₁
|
||||
have : (h : ℤ) = 0 := by
|
||||
exact WithTop.coe_eq_zero.mp h₁
|
||||
have : h = 0 := by
|
||||
exact Int.ofNat_eq_zero.mp this
|
||||
rw [this]
|
||||
rfl
|
||||
|
|
|
@ -4,26 +4,12 @@ import Nevanlinna.divisor
|
|||
import Nevanlinna.meromorphicAt
|
||||
import Nevanlinna.meromorphicOn_divisor
|
||||
import Nevanlinna.stronglyMeromorphicOn
|
||||
import Nevanlinna.mathlibAddOn
|
||||
|
||||
|
||||
open scoped Interval Topology
|
||||
open Real Filter MeasureTheory intervalIntegral
|
||||
|
||||
lemma WithTopCoe
|
||||
{n : WithTop ℕ} :
|
||||
WithTop.map (Nat.cast : ℕ → ℤ) n = 0 → n = 0 := by
|
||||
rcases n with h|h
|
||||
· intro h
|
||||
contradiction
|
||||
· intro h₁
|
||||
simp only [WithTop.map, Option.map] at h₁
|
||||
have : (h : ℤ) = 0 := by
|
||||
exact WithTop.coe_eq_zero.mp h₁
|
||||
have : h = 0 := by
|
||||
exact Int.ofNat_eq_zero.mp this
|
||||
rw [this]
|
||||
rfl
|
||||
|
||||
|
||||
theorem MeromorphicOn.decompose
|
||||
{f : ℂ → ℂ}
|
||||
|
|
|
@ -129,7 +129,45 @@ theorem StronglyMeromorphicAt.order_eq_zero_iff
|
|||
{z₀ : ℂ}
|
||||
(hf : StronglyMeromorphicAt f z₀) :
|
||||
hf.meromorphicAt.order = 0 ↔ f z₀ ≠ 0 := by
|
||||
sorry
|
||||
constructor
|
||||
· intro h₁f
|
||||
let A := hf.analytic (le_of_eq (id (Eq.symm h₁f)))
|
||||
apply A.order_eq_zero_iff.1
|
||||
let B := A.meromorphicAt_order
|
||||
rw [h₁f] at B
|
||||
apply WithTopCoe
|
||||
rw [eq_comm]
|
||||
exact B
|
||||
· intro h
|
||||
have hf' := hf
|
||||
rcases hf with h₁|h₁
|
||||
· have : f z₀ = 0 := by
|
||||
apply Filter.EventuallyEq.eq_of_nhds h₁
|
||||
tauto
|
||||
· obtain ⟨n, g, h₁g, h₂g, h₃g⟩ := h₁
|
||||
have : n = 0 := by
|
||||
by_contra hContra
|
||||
let A := Filter.EventuallyEq.eq_of_nhds h₃g
|
||||
have : (0 : ℂ) ^ n = 0 := by
|
||||
exact zero_zpow n hContra
|
||||
simp at A
|
||||
simp_rw [this] at A
|
||||
simp at A
|
||||
tauto
|
||||
rw [this] at h₃g
|
||||
simp at h₃g
|
||||
|
||||
have : hf'.meromorphicAt.order = 0 := by
|
||||
apply (hf'.meromorphicAt.order_eq_int_iff 0).2
|
||||
use g
|
||||
constructor
|
||||
· assumption
|
||||
· constructor
|
||||
· assumption
|
||||
· simp
|
||||
apply Filter.EventuallyEq.filter_mono h₃g
|
||||
exact nhdsWithin_le_nhds
|
||||
exact this
|
||||
|
||||
theorem StronglyMeromorphicAt.localIdentity
|
||||
{f g : ℂ → ℂ}
|
||||
|
|
Loading…
Reference in New Issue