Implementing...
This commit is contained in:
parent
7893050455
commit
c6caffc53d
|
@ -72,3 +72,20 @@ lemma Mnhds
|
||||||
· simp at h₂y
|
· simp at h₂y
|
||||||
rwa [h₂y]
|
rwa [h₂y]
|
||||||
· exact h₂t
|
· exact h₂t
|
||||||
|
|
||||||
|
-- unclear where this should go
|
||||||
|
|
||||||
|
lemma WithTopCoe
|
||||||
|
{n : WithTop ℕ} :
|
||||||
|
WithTop.map (Nat.cast : ℕ → ℤ) n = 0 → n = 0 := by
|
||||||
|
rcases n with h|h
|
||||||
|
· intro h
|
||||||
|
contradiction
|
||||||
|
· intro h₁
|
||||||
|
simp only [WithTop.map, Option.map] at h₁
|
||||||
|
have : (h : ℤ) = 0 := by
|
||||||
|
exact WithTop.coe_eq_zero.mp h₁
|
||||||
|
have : h = 0 := by
|
||||||
|
exact Int.ofNat_eq_zero.mp this
|
||||||
|
rw [this]
|
||||||
|
rfl
|
||||||
|
|
|
@ -4,26 +4,12 @@ import Nevanlinna.divisor
|
||||||
import Nevanlinna.meromorphicAt
|
import Nevanlinna.meromorphicAt
|
||||||
import Nevanlinna.meromorphicOn_divisor
|
import Nevanlinna.meromorphicOn_divisor
|
||||||
import Nevanlinna.stronglyMeromorphicOn
|
import Nevanlinna.stronglyMeromorphicOn
|
||||||
|
import Nevanlinna.mathlibAddOn
|
||||||
|
|
||||||
|
|
||||||
open scoped Interval Topology
|
open scoped Interval Topology
|
||||||
open Real Filter MeasureTheory intervalIntegral
|
open Real Filter MeasureTheory intervalIntegral
|
||||||
|
|
||||||
lemma WithTopCoe
|
|
||||||
{n : WithTop ℕ} :
|
|
||||||
WithTop.map (Nat.cast : ℕ → ℤ) n = 0 → n = 0 := by
|
|
||||||
rcases n with h|h
|
|
||||||
· intro h
|
|
||||||
contradiction
|
|
||||||
· intro h₁
|
|
||||||
simp only [WithTop.map, Option.map] at h₁
|
|
||||||
have : (h : ℤ) = 0 := by
|
|
||||||
exact WithTop.coe_eq_zero.mp h₁
|
|
||||||
have : h = 0 := by
|
|
||||||
exact Int.ofNat_eq_zero.mp this
|
|
||||||
rw [this]
|
|
||||||
rfl
|
|
||||||
|
|
||||||
|
|
||||||
theorem MeromorphicOn.decompose
|
theorem MeromorphicOn.decompose
|
||||||
{f : ℂ → ℂ}
|
{f : ℂ → ℂ}
|
||||||
|
|
|
@ -129,7 +129,45 @@ theorem StronglyMeromorphicAt.order_eq_zero_iff
|
||||||
{z₀ : ℂ}
|
{z₀ : ℂ}
|
||||||
(hf : StronglyMeromorphicAt f z₀) :
|
(hf : StronglyMeromorphicAt f z₀) :
|
||||||
hf.meromorphicAt.order = 0 ↔ f z₀ ≠ 0 := by
|
hf.meromorphicAt.order = 0 ↔ f z₀ ≠ 0 := by
|
||||||
sorry
|
constructor
|
||||||
|
· intro h₁f
|
||||||
|
let A := hf.analytic (le_of_eq (id (Eq.symm h₁f)))
|
||||||
|
apply A.order_eq_zero_iff.1
|
||||||
|
let B := A.meromorphicAt_order
|
||||||
|
rw [h₁f] at B
|
||||||
|
apply WithTopCoe
|
||||||
|
rw [eq_comm]
|
||||||
|
exact B
|
||||||
|
· intro h
|
||||||
|
have hf' := hf
|
||||||
|
rcases hf with h₁|h₁
|
||||||
|
· have : f z₀ = 0 := by
|
||||||
|
apply Filter.EventuallyEq.eq_of_nhds h₁
|
||||||
|
tauto
|
||||||
|
· obtain ⟨n, g, h₁g, h₂g, h₃g⟩ := h₁
|
||||||
|
have : n = 0 := by
|
||||||
|
by_contra hContra
|
||||||
|
let A := Filter.EventuallyEq.eq_of_nhds h₃g
|
||||||
|
have : (0 : ℂ) ^ n = 0 := by
|
||||||
|
exact zero_zpow n hContra
|
||||||
|
simp at A
|
||||||
|
simp_rw [this] at A
|
||||||
|
simp at A
|
||||||
|
tauto
|
||||||
|
rw [this] at h₃g
|
||||||
|
simp at h₃g
|
||||||
|
|
||||||
|
have : hf'.meromorphicAt.order = 0 := by
|
||||||
|
apply (hf'.meromorphicAt.order_eq_int_iff 0).2
|
||||||
|
use g
|
||||||
|
constructor
|
||||||
|
· assumption
|
||||||
|
· constructor
|
||||||
|
· assumption
|
||||||
|
· simp
|
||||||
|
apply Filter.EventuallyEq.filter_mono h₃g
|
||||||
|
exact nhdsWithin_le_nhds
|
||||||
|
exact this
|
||||||
|
|
||||||
theorem StronglyMeromorphicAt.localIdentity
|
theorem StronglyMeromorphicAt.localIdentity
|
||||||
{f g : ℂ → ℂ}
|
{f g : ℂ → ℂ}
|
||||||
|
|
Loading…
Reference in New Issue