Implementing...

This commit is contained in:
Stefan Kebekus 2024-11-12 16:49:07 +01:00
parent 7893050455
commit c6caffc53d
3 changed files with 57 additions and 16 deletions

View File

@ -72,3 +72,20 @@ lemma Mnhds
· simp at h₂y · simp at h₂y
rwa [h₂y] rwa [h₂y]
· exact h₂t · exact h₂t
-- unclear where this should go
lemma WithTopCoe
{n : WithTop } :
WithTop.map (Nat.cast : ) n = 0 → n = 0 := by
rcases n with h|h
· intro h
contradiction
· intro h₁
simp only [WithTop.map, Option.map] at h₁
have : (h : ) = 0 := by
exact WithTop.coe_eq_zero.mp h₁
have : h = 0 := by
exact Int.ofNat_eq_zero.mp this
rw [this]
rfl

View File

@ -4,26 +4,12 @@ import Nevanlinna.divisor
import Nevanlinna.meromorphicAt import Nevanlinna.meromorphicAt
import Nevanlinna.meromorphicOn_divisor import Nevanlinna.meromorphicOn_divisor
import Nevanlinna.stronglyMeromorphicOn import Nevanlinna.stronglyMeromorphicOn
import Nevanlinna.mathlibAddOn
open scoped Interval Topology open scoped Interval Topology
open Real Filter MeasureTheory intervalIntegral open Real Filter MeasureTheory intervalIntegral
lemma WithTopCoe
{n : WithTop } :
WithTop.map (Nat.cast : ) n = 0 → n = 0 := by
rcases n with h|h
· intro h
contradiction
· intro h₁
simp only [WithTop.map, Option.map] at h₁
have : (h : ) = 0 := by
exact WithTop.coe_eq_zero.mp h₁
have : h = 0 := by
exact Int.ofNat_eq_zero.mp this
rw [this]
rfl
theorem MeromorphicOn.decompose theorem MeromorphicOn.decompose
{f : } {f : }

View File

@ -129,7 +129,45 @@ theorem StronglyMeromorphicAt.order_eq_zero_iff
{z₀ : } {z₀ : }
(hf : StronglyMeromorphicAt f z₀) : (hf : StronglyMeromorphicAt f z₀) :
hf.meromorphicAt.order = 0 ↔ f z₀ ≠ 0 := by hf.meromorphicAt.order = 0 ↔ f z₀ ≠ 0 := by
sorry constructor
· intro h₁f
let A := hf.analytic (le_of_eq (id (Eq.symm h₁f)))
apply A.order_eq_zero_iff.1
let B := A.meromorphicAt_order
rw [h₁f] at B
apply WithTopCoe
rw [eq_comm]
exact B
· intro h
have hf' := hf
rcases hf with h₁|h₁
· have : f z₀ = 0 := by
apply Filter.EventuallyEq.eq_of_nhds h₁
tauto
· obtain ⟨n, g, h₁g, h₂g, h₃g⟩ := h₁
have : n = 0 := by
by_contra hContra
let A := Filter.EventuallyEq.eq_of_nhds h₃g
have : (0 : ) ^ n = 0 := by
exact zero_zpow n hContra
simp at A
simp_rw [this] at A
simp at A
tauto
rw [this] at h₃g
simp at h₃g
have : hf'.meromorphicAt.order = 0 := by
apply (hf'.meromorphicAt.order_eq_int_iff 0).2
use g
constructor
· assumption
· constructor
· assumption
· simp
apply Filter.EventuallyEq.filter_mono h₃g
exact nhdsWithin_le_nhds
exact this
theorem StronglyMeromorphicAt.localIdentity theorem StronglyMeromorphicAt.localIdentity
{f g : } {f g : }