Update complexHarmonic.examples.lean
This commit is contained in:
parent
89793b75d8
commit
c595da782c
|
@ -246,8 +246,7 @@ theorem log_normSq_of_holomorphicOn_is_harmonicOn
|
|||
{s : Set ℂ}
|
||||
(hs : IsOpen s)
|
||||
(h₁ : DifferentiableOn ℂ f s)
|
||||
(h₂ : ∀ z ∈ s, f z ≠ 0)
|
||||
(h₃ : ∀ z ∈ s, f z ∈ Complex.slitPlane) :
|
||||
(h₂ : ∀ z ∈ s, f z ≠ 0) :
|
||||
HarmonicOn (Real.log ∘ Complex.normSq ∘ f) s := by
|
||||
|
||||
let s₁ : Set ℂ := { z | f z ∈ Complex.slitPlane} ∩ s
|
||||
|
@ -269,7 +268,8 @@ theorem log_normSq_of_holomorphicOn_is_harmonicOn
|
|||
-- ∀ z ∈ s₁, f z ≠ 0
|
||||
exact fun z hz ↦ h₂ z (Set.mem_of_mem_inter_right hz)
|
||||
-- ∀ z ∈ s₁, f z ∈ Complex.slitPlane
|
||||
exact fun z hz ↦ h₃ z (Set.mem_of_mem_inter_right hz)
|
||||
intro z hz
|
||||
apply hz.1
|
||||
|
||||
let s₂ : Set ℂ := { z | -f z ∈ Complex.slitPlane} ∩ s
|
||||
|
||||
|
@ -314,7 +314,19 @@ theorem log_normSq_of_holomorphicOn_is_harmonicOn
|
|||
rw [← this]
|
||||
exact harm₁
|
||||
· use s₂
|
||||
sorry
|
||||
constructor
|
||||
· exact hs₂
|
||||
· constructor
|
||||
· tauto
|
||||
· have : s₂ = s ∩ s₂ := by
|
||||
apply Set.right_eq_inter.mpr
|
||||
exact Set.inter_subset_right {z | -f z ∈ Complex.slitPlane} s
|
||||
rw [← this]
|
||||
have : Real.log ∘ ⇑Complex.normSq ∘ f = Real.log ∘ ⇑Complex.normSq ∘ (-f) := by
|
||||
funext x
|
||||
simp
|
||||
rw [this]
|
||||
exact harm₂
|
||||
|
||||
|
||||
theorem log_normSq_of_holomorphic_is_harmonic
|
||||
|
|
Loading…
Reference in New Issue