Update complexHarmonic.examples.lean
This commit is contained in:
		| @@ -246,8 +246,7 @@ theorem log_normSq_of_holomorphicOn_is_harmonicOn | |||||||
|   {s : Set ℂ} |   {s : Set ℂ} | ||||||
|   (hs : IsOpen s) |   (hs : IsOpen s) | ||||||
|   (h₁ : DifferentiableOn ℂ f s) |   (h₁ : DifferentiableOn ℂ f s) | ||||||
|   (h₂ : ∀ z ∈ s, f z ≠ 0) |   (h₂ : ∀ z ∈ s, f z ≠ 0) : | ||||||
|   (h₃ : ∀ z ∈ s, f z ∈ Complex.slitPlane) : |  | ||||||
|   HarmonicOn (Real.log ∘ Complex.normSq ∘ f) s := by |   HarmonicOn (Real.log ∘ Complex.normSq ∘ f) s := by | ||||||
|  |  | ||||||
|   let s₁ : Set ℂ := { z | f z ∈ Complex.slitPlane} ∩ s |   let s₁ : Set ℂ := { z | f z ∈ Complex.slitPlane} ∩ s | ||||||
| @@ -269,7 +268,8 @@ theorem log_normSq_of_holomorphicOn_is_harmonicOn | |||||||
|     -- ∀ z ∈ s₁, f z ≠ 0 |     -- ∀ z ∈ s₁, f z ≠ 0 | ||||||
|     exact fun z hz ↦ h₂ z (Set.mem_of_mem_inter_right hz) |     exact fun z hz ↦ h₂ z (Set.mem_of_mem_inter_right hz) | ||||||
|     -- ∀ z ∈ s₁, f z ∈ Complex.slitPlane |     -- ∀ z ∈ s₁, f z ∈ Complex.slitPlane | ||||||
|     exact fun z hz ↦ h₃ z (Set.mem_of_mem_inter_right hz) |     intro z hz | ||||||
|  |     apply hz.1 | ||||||
|  |  | ||||||
|   let s₂ : Set ℂ := { z | -f z ∈ Complex.slitPlane} ∩ s |   let s₂ : Set ℂ := { z | -f z ∈ Complex.slitPlane} ∩ s | ||||||
|  |  | ||||||
| @@ -314,7 +314,19 @@ theorem log_normSq_of_holomorphicOn_is_harmonicOn | |||||||
|         rw [← this] |         rw [← this] | ||||||
|         exact harm₁ |         exact harm₁ | ||||||
|   · use s₂ |   · use s₂ | ||||||
|     sorry |     constructor | ||||||
|  |     · exact hs₂ | ||||||
|  |     · constructor | ||||||
|  |       · tauto | ||||||
|  |       · have : s₂ = s ∩ s₂ := by | ||||||
|  |           apply Set.right_eq_inter.mpr | ||||||
|  |           exact Set.inter_subset_right {z | -f z ∈ Complex.slitPlane} s | ||||||
|  |         rw [← this] | ||||||
|  |         have : Real.log ∘ ⇑Complex.normSq ∘ f = Real.log ∘ ⇑Complex.normSq ∘ (-f) := by | ||||||
|  |           funext x | ||||||
|  |           simp | ||||||
|  |         rw [this] | ||||||
|  |         exact harm₂ | ||||||
|  |  | ||||||
|  |  | ||||||
| theorem log_normSq_of_holomorphic_is_harmonic | theorem log_normSq_of_holomorphic_is_harmonic | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user
	 Stefan Kebekus
					Stefan Kebekus