From c44f4fe3b0c5ff69655680e4c249faa527f4566c Mon Sep 17 00:00:00 2001 From: Stefan Kebekus Date: Mon, 6 May 2024 09:01:43 +0200 Subject: [PATCH] Cleanup --- Nevanlinna/cauchyRiemann.lean | 3 +++ Nevanlinna/complexHarmonic.lean | 6 +++--- 2 files changed, 6 insertions(+), 3 deletions(-) diff --git a/Nevanlinna/cauchyRiemann.lean b/Nevanlinna/cauchyRiemann.lean index 68ea2c9..755fc68 100644 --- a/Nevanlinna/cauchyRiemann.lean +++ b/Nevanlinna/cauchyRiemann.lean @@ -3,6 +3,7 @@ import Mathlib.Analysis.Complex.RealDeriv variable {z : ℂ} {f : ℂ → ℂ} + theorem CauchyRiemann₁ : (DifferentiableAt ℂ f z) → (fderiv ℝ f z) Complex.I = Complex.I * (fderiv ℝ f z) 1 := by intro h @@ -10,6 +11,7 @@ theorem CauchyRiemann₁ : (DifferentiableAt ℂ f z) nth_rewrite 1 [← mul_one Complex.I] exact ContinuousLinearMap.map_smul_of_tower (fderiv ℂ f z) Complex.I 1 + theorem CauchyRiemann₂ : (DifferentiableAt ℂ f z) → lineDeriv ℝ f z Complex.I = Complex.I * lineDeriv ℝ f z 1 := by intro h @@ -17,6 +19,7 @@ theorem CauchyRiemann₂ : (DifferentiableAt ℂ f z) rw [DifferentiableAt.lineDeriv_eq_fderiv (h.restrictScalars ℝ)] exact CauchyRiemann₁ h + theorem CauchyRiemann₃ : (DifferentiableAt ℂ f z) → (lineDeriv ℝ (Complex.reCLM ∘ f) z 1 = lineDeriv ℝ (Complex.imCLM ∘ f) z Complex.I) ∧ (lineDeriv ℝ (Complex.reCLM ∘ f) z Complex.I = -lineDeriv ℝ (Complex.imCLM ∘ f) z 1) diff --git a/Nevanlinna/complexHarmonic.lean b/Nevanlinna/complexHarmonic.lean index 5a907c8..e75bea7 100644 --- a/Nevanlinna/complexHarmonic.lean +++ b/Nevanlinna/complexHarmonic.lean @@ -20,7 +20,6 @@ noncomputable def Complex.laplace : (ℂ → ℂ) → (ℂ → ℂ) := by def Harmonic (f : ℂ → ℂ) : Prop := (ContDiff ℝ 2 f) ∧ (∀ z, Complex.laplace f z = 0) -#check second_derivative_symmetric lemma zwoDiff (f : ℝ × ℝ → ℝ) (h : ContDiff ℝ 2 f) : ∀ z a b : ℝ × ℝ, 0 = 1 := by intro z a b @@ -61,13 +60,14 @@ lemma derivSymm (f : ℂ → ℂ) (h : Differentiable ℝ f) : dsimp [f'', f'] at A apply A -theorem re_comp_holomorphic_is_harmonic (f : ℂ → ℂ) : + +theorem holomorphic_is_harmonic (f : ℂ → ℂ) : Differentiable ℂ f → Harmonic f := by intro h constructor - · -- Complex.reCLM ∘ f is two times real continuously differentiable + · -- f is two times real continuously differentiable exact ContDiff.restrict_scalars ℝ (Differentiable.contDiff h) · -- Laplace of f is zero