Update complexHarmonic.lean
This commit is contained in:
parent
f85fafd05f
commit
b9a973d10d
|
@ -1,4 +1,5 @@
|
||||||
import Mathlib.Analysis.Complex.Basic
|
import Mathlib.Analysis.Complex.Basic
|
||||||
|
import Mathlib.Analysis.Complex.TaylorSeries
|
||||||
import Mathlib.Analysis.Calculus.LineDeriv.Basic
|
import Mathlib.Analysis.Calculus.LineDeriv.Basic
|
||||||
import Mathlib.Analysis.Calculus.ContDiff.Defs
|
import Mathlib.Analysis.Calculus.ContDiff.Defs
|
||||||
import Mathlib.Analysis.Calculus.FDeriv.Basic
|
import Mathlib.Analysis.Calculus.FDeriv.Basic
|
||||||
|
@ -16,6 +17,18 @@ noncomputable def Complex.laplace : (ℂ → ℝ) → (ℂ → ℝ) := by
|
||||||
def Harmonic (f : ℂ → ℝ) : Prop :=
|
def Harmonic (f : ℂ → ℝ) : Prop :=
|
||||||
(ContDiff ℝ 2 f) ∧ (∀ z, Complex.laplace f z = 0)
|
(ContDiff ℝ 2 f) ∧ (∀ z, Complex.laplace f z = 0)
|
||||||
|
|
||||||
|
#check contDiff_iff_ftaylorSeries.2
|
||||||
|
|
||||||
|
lemma c2_if_holomorphic (f : ℂ → ℂ) : Differentiable ℂ f → ContDiff ℂ 2 f := by
|
||||||
|
intro fHyp
|
||||||
|
exact Differentiable.contDiff fHyp
|
||||||
|
|
||||||
|
lemma c2R_if_holomorphic (f : ℂ → ℂ) : Differentiable ℂ f → ContDiff ℝ 2 f := by
|
||||||
|
intro fHyp
|
||||||
|
let ZZ := c2_if_holomorphic f fHyp
|
||||||
|
apply ContDiff.restrict_scalars ℝ ZZ
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
theorem re_comp_holomorphic_is_harmonic (f : ℂ → ℂ) :
|
theorem re_comp_holomorphic_is_harmonic (f : ℂ → ℂ) :
|
||||||
Differentiable ℂ f → Harmonic (Complex.reCLM ∘ f) := by
|
Differentiable ℂ f → Harmonic (Complex.reCLM ∘ f) := by
|
||||||
|
@ -23,15 +36,17 @@ theorem re_comp_holomorphic_is_harmonic (f : ℂ → ℂ) :
|
||||||
intro h
|
intro h
|
||||||
|
|
||||||
constructor
|
constructor
|
||||||
· -- f is two times real continuously differentiable
|
· -- Complex.reCLM ∘ f is two times real continuously differentiable
|
||||||
sorry
|
apply ContDiff.comp
|
||||||
|
· -- Complex.reCLM is two times real continuously differentiable
|
||||||
|
exact ContinuousLinearMap.contDiff Complex.reCLM
|
||||||
|
· -- f is two times real continuously differentiable
|
||||||
|
exact c2R_if_holomorphic f h
|
||||||
|
|
||||||
· -- Laplace of f is zero
|
· -- Laplace of f is zero
|
||||||
intro z
|
intro z
|
||||||
unfold Complex.laplace
|
unfold Complex.laplace
|
||||||
simp
|
simp
|
||||||
let ZZ := (CauchyRiemann₃ (h z)).left
|
let ZZ := (CauchyRiemann₃ (h z)).left
|
||||||
rw [ZZ]
|
|
||||||
|
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue